Saltar al contenido principal
LibreTexts Español

4.2: Equilibrio del mercado

  • Page ID
    139323
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    En un mercado, la demanda y la oferta se unen para determinar el precio y la cantidad de un producto. Se dice que un mercado está en equilibrio cuando el precio predominante hace que la cantidad suministrada sea igual a la cantidad demandada. El término equilibrio sugiere un punto de estabilidad. Debido a que la oferta es igual a la demanda en un equilibrio, no hay razón para que los consumidores pujan precios al alza a través de solicitudes no satisfechas del producto ni es su razón para que los productores oferten precios a la baja debido a ofertas no tomadas del producto. El precio es, a este respecto, estable.

    Consideremos un ejemplo que involucra un mercado único. Supongamos que la demanda del bien 1 viene dada por

    \(Q_{1}^{D} = 100 - \dfrac{1}{2} P_{1} + D,\)

    donde\(Q_{1}^{D}\) se demanda cantidad,\(P_{1}\) es precio, y\(D\) es un choque de demanda. \(D\)puede ser positivo, negativo o cero.

    A continuación, supongamos que el suministro para el bien 1 viene dado por

    \(Q_{1}^{S} = -20 + P_{1} + S,\)

    donde\(Q_{1}^{S}\) se suministra la cantidad y\(S\) es un choque de suministro. Nuevamente,\(S\) puede ser positivo, negativo o cero.

    Para encontrar el precio de equilibrio, establezca\(Q_{1}^{S} = Q_{1}^{D}\) y resuelva de la\(P_{1}\) siguiente manera:

    \(-20 + P_{1} + S = 100 - \dfrac{1}{2}P_{1} + D \Rightarrow P_{1} = 80 + \dfrac{2}{3}(D-S).\)

    A continuación, sustituya esta solución\(P_{1}\) en la ecuación de oferta o demanda. Si la solución para\(P_{1}\) es correcta, obtendrá la misma cantidad independientemente de la ecuación que utilice:

    \(Q_{1}^{S} = -20 + 80 + \dfrac{2(D-S)}{3} + S = 60 + \dfrac{2D+S}{3}.\)

    \(Q_{1}^{D} = 100 - \dfrac{1}{2}(80 + \dfrac{2(D-S)}{3}) + X = 60 + \dfrac{2D+S}{3}.\)

    Un equilibrio basado en este ejemplo se representa a continuación en Demostraciones\(\PageIndex{1}\) y\(\PageIndex{2}\). Tenga en cuenta que cuando no hay demanda o choque de oferta (\(D = S = 0\)),\(P_{1}^{E} =80 \: and \: Q_{1}^{E} = 60\). Este es el equilibrio inicial representado en las demostraciones. Utilice Demostración\(\PageIndex{1}\) para agregar un choque positivo a la demanda. Al hacer esto, el horario de demanda se desplaza hacia la derecha en 12 unidades. Esto altera el equilibrio. Al precio actual de 80 dólares, solo se abastecen 60 unidades pero ahora se demandarían 72 unidades. Dado que la demanda ahora supera a la oferta, el precio se puja hasta alcanzar un nuevo precio de equilibrio de 88 dólares lo que provoca que el nuevo horario de demanda se equipare con el horario de oferta en una nueva cantidad de equilibrio de 68 unidades. Así, el choque inicial de 12 unidades positivas finalmente resultó en un aumento de 8 unidades en la cantidad de equilibrio después del precio de mercado ajustado a un nuevo precio de equilibrio.

    Restablecer el choque de demanda en Demostración\(\PageIndex{1}\) para que sea cero. Volverás al equilibrio original de\(P_{1}^{E} = 80 \: and \: Q_{1}^{E} = 60\). Ahora usa la demostración para aplicar un choque negativo a la demanda. Esto provoca que la demanda se desplace hacia la izquierda en 12 unidades. Al precio actual de 80 dólares, solo se demandarían 48 unidades tras el choque, pero los proveedores continuarán ofreciendo 60 unidades en el mercado. Debido a que la oferta ahora supera a la demanda, el precio se puja a la baja hasta que el mercado alcance un nuevo precio de equilibrio de 72 dólares y una nueva cantidad de equilibrio de 52 unidades. Nuevamente el choque inicial de 12 unidades negativas finalmente resultó en una disminución de 8 unidades en la cantidad de equilibrio después de que el precio de mercado alcanzara un nuevo equilibrio.

    Demostración\(\PageIndex{1}\). Un ajuste de equilibrio y equilibrio resultante de un choque de demanda.

    clipboard_e02b09261866590ebd6a95a6c7dde1d65.png

    Demostración\(\PageIndex{2}\), es similar salvo que permite considerar el efecto de choques positivos o negativos a la oferta en contraposición a la demanda. Pase algún tiempo con la demostración\(\PageIndex{2}\) para visualizar los efectos de un choque de suministro positivo o negativo. Al igual que usted, tenga en cuenta que un choque interrumpe el equilibrio para que la oferta ya no sea igual a la demanda. Como resultado, los precios se pujan hacia arriba o hacia abajo según sea necesario hasta que se determine un nuevo precio de equilibrio que coincida con la demanda con el nuevo horario de oferta. Preste atención a la dirección del cambio de cantidad y precio en respuesta a los choques de oferta positivos y negativos.

    Demostración\(\PageIndex{2}\). Un ajuste de equilibrio y equilibrio resultante de un choque de suministro.

    clipboard_e52fddcbd44974b786e88296b5df72a24.png

    Variables exógenas y endógenas en un modelo de equilibrio

    En el ejemplo anterior, se encontró un equilibrio resolviendo un sistema de ecuaciones. En el caso de un mercado, hay dos ecuaciones (una ecuación de oferta y una ecuación de demanda) y dos incógnitas (el precio de equilibrio y la cantidad de equilibrio). Estas variables desconocidas se denominan variables endógenas. Se les da este nombre porque se determinan dentro del sistema de ecuaciones. La etimología del prefijo “endo” proviene de una palabra griega que significa “dentro”. En general, el número de variables endógenas en el sistema será igual al número de ecuaciones de demanda y oferta. Por ejemplo, en un modelo de dos mercados, hay cuatro ecuaciones (dos pares de ecuaciones de demanda y oferta) y cuatro variables endógenas (un precio de equilibrio y cantidad en cada uno de los dos mercados).

    Las variables exógenas afectan el equilibrio pero se determinan fuera del sistema de ecuaciones. Como habrás adivinado, el prefijo “exo” también tiene su origen en una palabra griega que significa “afuera”. En cuanto a los horarios de demanda o oferta, un cambio en una variable exógena provoca que uno o más de los horarios se desvíen. En el ejemplo anterior, hubo dos variables exógenas:\(D\) y\(S\). No hay límite superior en el número de variables exógenas que se pueden incluir en el sistema. Las variables exógenas serán un subconjunto de las designadas en los capítulos 1 y 2 como variables de cambio de demanda o oferta. Sin embargo el término “desplazador” y “exógeno” no son sinónimos. Para ser verdaderamente exógena, la variable de cambio no debe verse afectada por los mercados que se analizan en el modelo. De lo contrario, no es verdaderamente exógeno. Por ejemplo, se podría argumentar que la carne de res y el cerdo son sustitutos. Si esto es cierto, el precio de la carne de cerdo desplaza la demanda de carne de res. Sin embargo, sería problemático suponer que el precio de la carne de cerdo es exógeno porque el precio de la carne también desplaza la demanda de carne de cerdo. En este caso, un modelo preciso tendría que abarcar los mercados tanto de carne de res como de cerdo, en cuyo caso los precios y cantidades de carne de res y cerdo serían variables endógenas en el modelo.

    En muchos contextos, un cambio en el ingreso promedio del consumidor, otra variable de cambio de demanda, podría tratarse como exógeno. Esto está bien siempre y cuando sea razonable afirmar que los ingresos son dictados por fuerzas macroeconómicas que se ven mínimamente afectadas por el mercado que se analiza. No obstante, habrá casos en los que los ingresos no deben considerarse exógenos. De hecho, el ingreso es endógeno en uno de los modelos de consumo que se presentarán en el Capítulo 5. En este modelo, los ingresos están determinados por la asignación del consumidor del tiempo que pasa en las actividades de ocio, en la fuerza laboral y en la producción familiar. De igual manera, en algunos casos, el lado de la oferta del mercado será lo suficientemente pequeño como para no afectar materialmente el precio de un insumo. En tales casos, puede ser razonable suponer que los precios de los insumos son variables exógenas dentro del modelo. En otros, será necesario incorporar formalmente los mercados de insumos al modelo y los precios de los insumos serán endógenos.

    Un marco básico para identificar la causa de un cambio de equilibrio

    Demostración\(\PageIndex{3}\). Un marco básico para identificar la causa de un cambio de equilibrio.

    clipboard_ea0b7e1edc48949e341de32f1b4af1e33.png

    En las regiones 1 y 3 de Demostración\(\PageIndex{3}\), se puede concluir con certeza que la demanda ha cambiado. Si el nuevo equilibrio se encuentra al suroeste del equilibrio inicial (la región denotada como 1), entonces la demanda ha disminuido (desplazado hacia la izquierda). Si el nuevo equilibrio se encuentra al noreste del equilibrio inicial (la región denotada como 3), entonces la demanda ha aumentado (desplazado hacia la derecha). Si un nuevo equilibrio se encuentra en las regiones 1 o 3, no se pueden hacer declaraciones concluyentes sobre un cambio de oferta. La oferta podría haber cambiado pero no se puede estar seguro. Para ayudarle a ver esto, utilice la demostración para agregar un choque negativo a la demanda y un choque positivo a la oferta. El nuevo punto de equilibrio se encuentra en la región 1 a pesar de que la oferta también ha cambiado. Ahora vuelve a ajustar el choque de suministro a “ninguno”. El equilibrio resultante aún se encuentra en la región 1. En la región 1 lo único que se puede decir con certeza es que la demanda ha disminuido. El suministro puede haber cambiado o no. No se puede hacer una declaración concluyente sobre el suministro si se encuentra en la región 1.

    En las regiones 2 y 4 de Demostración\(\PageIndex{3}\), sabes que la oferta ha cambiado. Si el nuevo equilibrio se encuentra al noroeste del equilibrio inicial (la región denotada como 2), entonces se puede hacer una declaración concluyente de que la oferta ha disminuido (desplazado hacia la izquierda). Si el nuevo equilibrio se encuentra al sureste del equilibrio inicial (la región denotada como 4), entonces se puede hacer una declaración concluyente de que la oferta ha aumentado (desplazado hacia la derecha). Nuevamente, la demanda puede o no haber cambiado si se observa un nuevo equilibrio en las regiones 2 o 4. Sin embargo, no hay manera de que un nuevo equilibrio esté en las regiones 2 o 4 sin que haya habido un cambio de oferta.

    En Demostración\(\PageIndex{3}\), se pueden ver los horarios de demanda y oferta. No obstante, las conclusiones anteriores se pueden inferir de este marco básico aunque no se pudiera. El marco requiere únicamente que las leyes de la demanda y la oferta se apliquen al mercado que se examina. Utilice Demostración\(\PageIndex{3}\) para verificar las conclusiones resumidas en la Tabla\(\PageIndex{1}\). Debido a que se le dan ejemplos de horarios de demanda y oferta en Demostración\(\PageIndex{3}\), puede preguntarse por qué algunas de las direcciones están marcadas como ambiguas en la tabla. Por ejemplo, un choque positivo en la demanda y un choque negativo en la oferta da como resultado un ligero aumento en la cantidad de equilibrio dados los horarios de ejemplo en la demostración. No obstante, se podría haber proporcionado otro conjunto de programas de ejemplo que hubieran mostrado una disminución en la cantidad. Obsérvese que los casos ambiguos en la tabla\(\PageIndex{1}\) ocurren cuando la demanda y la oferta cambian simultáneamente y cuando el impacto de los cambios de demanda y oferta en el precio o la cantidad se compensan entre sí. El cambio real en estos casos ambiguos depende de la magnitud del choque de oferta relativo al choque de demanda y, como verá momentáneamente, de la elasticidad de la demanda y la oferta.

    Mesa\(\PageIndex{1}\). Efectos de los choques de demanda y oferta en el equilibrio del mercado
    Shock de suministro Choque de demanda Efecto sobre la Ec. Precio Efecto sobre la Ec. Cantidad
    + Ninguno
    Ninguno
    Ninguno +
    Ninguno
    + + Ambiguo
    + Ambiguo
    + Ambiguo
    Ambiguo

    This page titled 4.2: Equilibrio del mercado is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Michael R. Thomsen.