Saltar al contenido principal

# 1.10:45-45-90 Triángulos Rectos

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Los tiempos de pierna$$\sqrt{2}$$ son iguales a hipotenusa

### 45-45-90 Triángulos Recto

Un triángulo rectángulo con patas congruentes y ángulos agudos es un triángulo rectángulo isósceles. Este triángulo también se llama triángulo 45-45-90 (llamado así por las medidas del ángulo).

$$\Delta ABC$$es un triángulo rectángulo con$$m\angle A=90^{\circ}$$,$$\overline{AB} \cong \overline{AC}$$ y$$m\angle B=m\angle C=45^{\circ}$$.

45-45-90 Teorema: Si un triángulo rectángulo es isósceles, entonces sus lados están en la proporción$$x:x:x\sqrt{2}$$. Para cualquier triángulo rectángulo isósceles, las piernas son$$x$$ y la hipotenusa es siempre$$x\sqrt{2}$$.

¿Y si te dieran un triángulo rectángulo isósceles y la longitud de uno de sus lados? ¿Cómo pudiste averiguar las longitudes de sus otros lados?

##### Ejemplo$$\PageIndex{1}$$

Encuentra la longitud de$$x$$.

Solución

Usa la$$x:x:x\sqrt{2}$$ relación.

Aquí, se nos da la hipotenusa. Resolver para$$x$$ en la proporción.

\begin{aligned} x\sqrt{2} =16\\ x=16\sqrt{2}\cdot \dfrac{\sqrt{2}}{\sqrt{2}}=\dfrac{16\sqrt{2}}{2}=8\sqrt{2} \end{aligned}

##### Ejemplo$$\PageIndex{2}$$

Encuentra la longitud de$$x$$, donde$$x$$ esta la hipotenusa de un triángulo 45-45-90 con longitudes de pierna de$$5\sqrt{3}$$.

Solución

Usa la$$x:x:x\sqrt{2}$$ relación.

$$x=5\sqrt{3}\cdot\sqrt{2}=5\sqrt{6}$$

##### Ejemplo$$\PageIndex{3}$$

Encuentra la longitud del lado faltante.

Solución

Usa la$$x:x:x\sqrt{2}$$ relación. $$TV=6$$porque es igual a$$ST$$. Entonces,$$SV=6 \cdot \sqrt{2}=6\sqrt{2}$$.

##### Ejemplo$$\PageIndex{4}$$

Encuentra la longitud del lado faltante.

Solución

Usa la$$x:x:x\sqrt{2}$$ relación. $$AB=9\sqrt{2}$$porque es igual a$$AC$$. Entonces,$$BC=9\sqrt{2}\cdot\sqrt{2}=9\cdot 2=18$$.

##### Ejemplo$$\PageIndex{5}$$

Solución

Sabemos que la mitad de un cuadrado es un triángulo 45-45-90, entonces$$10=s\sqrt{2}$$.

\begin{aligned} s\sqrt{2}&=10 \\ s&=10\sqrt{2}\cdot \dfrac{\sqrt{2}}{\sqrt{2}}=\dfrac{10\sqrt{2}}{2}=5\sqrt{2} \end{aligned}

### Revisar

1. En un triángulo rectángulo isósceles, si una pierna es 4, entonces la hipotenusa es __________.
2. En un triángulo rectángulo isósceles, si una pata es x, entonces la hipotenusa es __________.

Para las preguntas 5-11, encuentra los largos de los lados faltantes. Simplifica todos los radicales.

### Reseña (Respuestas)

Para ver las respuestas de Revisar, abra este archivo PDF y busque la sección 8.5.

## vocabulario

Término Definición
Teorema 45-90 Para cualquier triángulo rectángulo isósceles, si las patas son x unidades de largo, la hipotenusa es siempre$$x\sqrt{2}$$.
45-45-90 Triángulo Un triángulo 45-45-90 es un triángulo rectángulo especial con ángulos de$$45^{\circ}$$,$$45^{\circ}$$, y$$90^{\circ}$$.
Hipotenusa La hipotenusa de un triángulo rectángulo es el lado más largo del triángulo rectángulo. Está frente al ángulo recto.
Patas de un Triángulo Recto Las patas de un triángulo rectángulo son los dos lados más cortos del triángulo rectángulo. Las patas están adyacentes al ángulo recto.