Saltar al contenido principal
LibreTexts Español

14.3: Los soportes de Poisson para los elementos orbitales

  • Page ID
    131122
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Un ejemplo trabajado está en orden. De las Ecuaciones 14.2.7 y 14.2.8, vemos que los corchetes de Poisson están definidos por

    \[\{ A_i , A_k \}_{α_j , β_j} = \sum_j \left( \frac{\partial A_i}{\partial α_j} \frac{\partial A_k}{\partial β_j} - \frac{\partial A_i}{\partial β_j} \frac{\partial A_k}{\partial α_j} \right) . \label{14.3.1} \]

    Los\(A_i\) son los elementos orbitales.

    Para nuestro ejemplo, calcularemos\(\{ Ω , i \}\) y escribiremos la suma en su totalidad:

    \[\begin{align} \{ Ω , i \} &= \sum_j \left( \frac{\partial Ω}{\partial α_j} \frac{\partial i}{\partial β_j} - \frac{\partial Ω}{\partial β_j} \frac{\partial i}{\partial α_j} \right) \\[4pt] &= \frac{\partial Ω}{\partial α_1} \frac{\partial i}{\partial β_1} + \frac{\partial Ω}{\partial α_2} \frac{\partial i}{\partial β_2} + \frac{\partial Ω}{\partial α_3} \frac{\partial i}{\partial β_3} - \frac{\partial Ω}{\partial β_1} \frac{\partial i}{\partial α_1} - \frac{\partial Ω}{\partial β_2} \frac{\partial i}{\partial α_2} - \frac{\partial Ω}{\partial β_3} \frac{\partial i}{\partial α_3}. \label{14.3.2} \end{align}\]

    Refiérase ahora a las Ecuaciones 10.11.27 y 29, y encontramos

    \[\{ Ω, i \} = 0 + 0 + 0 - 0 + \frac{1}{α_3 \sqrt{1 - α_2^2 / α_3^2}} - 0 . \label{14.3.3} \]

    Por último, haciendo referencia a las Ecuaciones 10.11.20 y 21, obtenemos

    \[ \{ Ω , i \} = \frac{1}{\sqrt{GMm^2 a (1-e^2). \sin i}} . \label{14.3.4}\]

    Procediendo de manera similar para los demás, obtenemos

    \[\begin{align} \{ a , T \} &= - \frac{2a^2}{GMm}, \label{14.3.5} \\[4pt] \{ e , T \} &= - \frac{a(1-e^2)}{GMme}, \label{14.3.6} \\[4pt] \{ i , ω \} &= \frac{1}{\sqrt{GMm^2 a (1-e^2). \tan i}} . \label{14.3.7} \\[4pt] \{ e , ω \} &= - \frac{\sqrt{1-e^2}}{em \sqrt{GMa}}, \label{14.3.8} \end{align}\]

    Además, tenemos, por supuesto,

    \[ \{ i , Ω \} = - \{ Ω , i \} , \{ T , a \} = - \{ a , T \} , \{ T , e \} = - \{ e , T \} \text{ and } \{ ω , i \} = - \{ i , ω \} .\]

    Todos los demás pares son cero.


    This page titled 14.3: Los soportes de Poisson para los elementos orbitales is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.