Saltar al contenido principal
LibreTexts Español

14.10: Impedancia Generalizada

  • Page ID
    131970
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Hemos tratado en el Capítulo 13 un voltaje sinusoidalmente variable aplicado a una inductancia, una resistencia y una capacitancia en serie. La ecuación que rige la relación entre voltaje y corriente es

    \[V=L\dot I + RI + Q/C.\label{14.10.1}\]

    Si multiplicamos por\(C\), differentiate with respect to time, and write \(I\) for \(\dot Q\), this becomes just

    \[C \dot V = LC \ddot I + RC \dot I + I.\label{14.10.2}\]

    Si suponemos que el voltaje aplicado\(V\) is varying sinusoidally (that is, \(V=\hat{V}e^{j\omega t}\), or, if you prefer, \(V=\hat{V}\sin \omega t\)), entonces el operador\(d^2/dt^2\), o “punto doble”, equivale a multiplicar por\(-\omega ^2\), y el operador\(d/dt\), o “punto”, equivale a multiplicar por\(j\omega\) . Así, la ecuación\ ref {14.10.2} es equivalente a

    \[j\omega CV = -LC\omega^2I+ jRC\omega I + I.\label{14.10.3}\]

    Es decir,\[V=[R+jL\omega + 1/jC\omega]I.\label{14.10.4}\]

    La expresión compleja dentro de los corchetes es la ahora familiar impedancia Z, y podemos escribir

    \[V=IZ.\label{14.10.5}\]

    Pero, ¿y si\(V\) is not varying sinusoidally? Suppose that \(V\) is varying in some other manner, perhaps not even periodically? This might include, as one possible example, the situation where \(V\) is constant and not varying with time at all. But whether or not \(V\) varying with time, Equation \ref{14.10.2} is still valid – except that, unless the time variation is sinusoidally, we cannot substitute \(j\omega\) para\(d/dt\). We are faced with having to solve the differential Equation \ref{14.10.2}.

    Pero acabamos de aprender una nueva forma ordenada de resolver ecuaciones diferenciales de este tipo. Podemos tomar la transformación de Laplace de cada lado de la ecuación. Así

    \[C\bar{\dot V} = LC \bar{\ddot I} + RC \bar{\dot I} + \bar{I}.\label{14.10.6}\]

    Ahora vamos a hacer uso del teorema de diferenciación, ecuaciones 14.7.2 y 14.7.3.

    \[C(s\bar{V}-V_0) = LC(s^2\bar{I} - sI_0 - \dot I_0) + RC(s\bar{I} - I_0) + \bar{I}.\label{14.10.7}\]

    Supongamos que, al\(t=0\), \(V_0\) and \(I_0\) are both zero – i.e. before \(t=0\) a switch was open, and we close the switch at \(t=0\). Furthermore, since the circuit contains inductance, the current cannot change instantaneously, and, since it contains capacitance, the voltage cannot change instante, así la ecuación se convierte en

    \[\bar{V} = (R+Ls+1/Cs)\bar{I}.\label{14.10.8}\]

    Esto es así independientemente de la forma de la variación de\(V\): it could be sinusoidal, it could be constant, or it could be something quite different. This is a generalized Ohm's law. The generalized impedance of the circuit is \(R+Ls+\frac{1}{Cs}\). Recall that in the complex number treatment of a steady-state sinusoidal voltage, the complex impedance was \(R+jL\omega+\frac{1}{jCw}\).

    Para saber cómo varía la corriente, todo lo que tenemos que hacer es tomar la transformada inversa de Laplace de

    \[\bar{I}=\frac{\bar{V}}{R+Ls+1/(Cs)}.\label{14.10.9}\]

    Nos fijamos en un par de ejemplos en las siguientes secciones.


    This page titled 14.10: Impedancia Generalizada is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.