Saltar al contenido principal
LibreTexts Español

5.2: Generalización de Matrices

  • Page ID
    125106
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Podemos generalizar el algoritmo de eliminación gaussiano descrito en el apartado anterior, para resolver problemas matriciales de la forma

    \[\mathbf{A}\, \mathbf{x} = \mathbf{b},\]

    donde\(\mathbf{x}\) y\(\mathbf{b}\) son\(N\times M\) matrices, no meramente vectores. Un ejemplo, para\(M=2\), es

    \[\begin{bmatrix}1 &2 &3 \\ 3 &2 &2 \\ 2 &6 &2\end{bmatrix} \begin{bmatrix} x_{00} & x_{01} \\ x_{10} & x_{11} \\ x_{20} & x_{21} \end{bmatrix} = \begin{bmatrix}3 & 6 \\ 4 & 8 \\ 4 & 2\end{bmatrix}.\]

    Puede llegar a ser un poco tedioso seguir escribiendo los\(x\) elementos en el sistema de ecuaciones, particularmente cuando\(\mathbf{x}\) se convierte en una matriz. Por esta razón, cambiamos a una notación conocida como la matriz aumentada:

    \[\left[\begin{array}{ccc|cc} 1 & 2 & 3 & 3 & 6 \\ 3 & 2 & 2 & 4 & 8 \\ 2 & 6 & 2 & 4 & 2 \end{array}\right].\]

    Aquí, las entradas a la izquierda del separador vertical denotan el lado izquierdo del sistema de ecuaciones, y las entradas a la derecha del separador denotan el lado derecho del sistema de ecuaciones.

    El algoritmo de eliminación gaussiana ahora se puede realizar directamente sobre la matriz aumentada. Caminaremos por los pasos para el ejemplo anterior. Primero, reducción de fila:

    • Elimine el elemento en\((1,0)\):
      \[\left[\begin{array}{ccc|cc} 1 & 2 & 3 & 3 & 6 \\ 0 & -4 & -7 & -5 & -10 \\ 2 & 6 & 2 & 4 & 2 \end{array}\right]\]
    • Elimine el elemento en\((2,0)\):
      \[\left[\begin{array}{ccc|cc} 1 & 2 & 3 & 3 & 6 \\ 0 & -4 & -7 & -5 & -10 \\ 0 & 2 & -4 & -2 & -10 \end{array}\right]\]
    • Elimine el elemento en\((2,1)\):
      \[\left[\begin{array}{ccc|cc} 1 & 2 & 3 & 3 & 6 \\ 0 & -4 & -7 & -5 & -10 \\ 0 & 0 & -7.5 & -4.5 & -15 \end{array}\right]\]

    El paso de sustitución inversa convierte la porción izquierda de la matriz aumentada en la matriz de identidad:

    • Resolver para fila\(2\):
      \[\left[\begin{array}{ccc|cc} 1 & 2 & 3 & 3 & 3 \\ 0 & -4 & -7 & -5 & -10 \\ 0 & 0 & 1 & 0.6 & 2 \end{array}\right]\]
    • Resolver para fila\(1\):
      \[\left[\begin{array}{ccc|cc} 1 &\; 2 & \;\;\;3 \;\;& 3 & \;3 \\ 0 & \;1 & \;\;\;0\;\; & 0.2 & \;-1 \\ 0 & \;0 & \;\;\;1\;\; & 0.6 & \;2 \end{array}\right]\]
    • Resolver para fila\(0\):
      \[\left[\begin{array}{ccc|cc} 1 & \;0 & \;\;\;0\;\; & 0.8 & \;2 \\ 0 & \;1 & \;\;\;0\;\; & 0.2 & \;-1 \\ 0 & \;0 & \;\;\;1\;\; & 0.6 & \;2 \end{array}\right]\]

    Una vez que termina el algoritmo, el lado derecho de la matriz aumentada contiene el resultado para\(\mathbf{x}\). Analizando el tiempo de ejecución usando el mismo razonamiento que antes, encontramos que el paso de reducción de fila se escala como\(O\Big(N^2(N+M)\Big)\), y el paso de sustitución inversa escala como\(O\Big(N(N+M)\Big)\).

    Esta forma matricial del algoritmo de eliminación gaussiana es el método estándar para calcular las inversas de matriz. Si\(\mathbf{b}\) es la matriz de\(N\times N\) identidad, entonces la solución\(\mathbf{x}\) será la inversa de\(\mathbf{A}\). Así, el tiempo de ejecución para calcular una matriz inversa escala como\(O(N^{3})\).


    This page titled 5.2: Generalización de Matrices is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.