Saltar al contenido principal
LibreTexts Español

11.5: Ejercicios

  • Page ID
    126038
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Ejercicio\(\PageIndex{1}\)

    Encuentre la función de Green en el dominio del tiempo del oscilador armónico amortiguado críticamente (\(\gamma = \omega_0\)).

    Ejercicio\(\PageIndex{2}\)

    Considera un oscilador armónico sobreamortiguado (\(\gamma > \omega_0\)) sometido a una fuerza impulsora aleatoria\(f(t)\), que fluctúa entre valores aleatorios, que pueden ser positivos o negativos, en cada momento\(t\). La fuerza aleatoria satisface\[\left\langle f(t)\right\rangle = 0 \quad\mathrm{and}\;\;\;\left\langle f(t) f(t')\right\rangle = A \, \delta(t-t'),\] donde\(\left\langle\cdots\right\rangle\) denota un promedio tomado sobre muchas realizaciones de la fuerza aleatoria y\(A\) es alguna constante. Usando la función causal de Green, encuentra la función de correlación\(\left\langle x(t_1)\, x(t_2) \right\rangle\) y la desviación cuadrática media\(\left\langle [x(t+\Delta t) - x(t)]^2 \right\rangle.\)

    Contestar

    Para el oscilador sobreamortiguado, la función del Verde es\[G(t,t') = \Theta(t-t')\, \frac{e^{-\gamma(t-t')}}{\Gamma} \sinh\big[\Gamma(t-t')\big], \quad\mathrm{where}\;\,\Gamma = \sqrt{\gamma^2 - \omega_0^2}.\] Por lo tanto, la respuesta a la fuerza\(f\) es\[x(t) = \frac{1}{m\Gamma} \int^t_{-\infty} dt'\; e^{-\gamma(t-t')} \sinh\big[\Gamma(t-t')\big] f(t').\] A partir de esto, obtenemos la siguiente expresión para la función de correlación deseada:\[\begin{align} \nonumber\langle x(t_1)\, x(t_2)\rangle = \frac{1}{m^2\Gamma^2}& \int^{t_1}_{-\infty} dt' \int^{t_2}_{-\infty} dt'' \; e^{-\gamma(t_1-t')}\, e^{-\gamma(t_2-t'')} \\ &\times \sinh\big[\Gamma(t_1-t')\big] \sinh\big[\Gamma(t_2-t'')\big] \; \langle f(t') f(t'')\rangle.\end{align}\] Tenga en cuenta que el\(\langle\cdots\rangle\) puede ser desplazado dentro de las integrales, porque representa tomar la media sobre trayectorias de muestra independientes. Ahora bien, sin pérdida de generalidad, tomemos\[t_1 \ge t_2.\] Desde\(\langle f(t') f(t'')\rangle = A \delta(t'-t'')\) que se desvanece para\(t' \ne t''\), la doble integral sólo recibe contribuciones de valores de\(t'\) no exceder\(t_2\) (que es el límite superior del rango para\(t''\)). Así, revisamos\(\int^{t_1} dt'\) en\(\int^{t_2} dt'\). La función delta luego reduce la doble integral en una sola integral, que puede resolverse y simplificarse con un poco de álgebra tediosa:\[\begin{align} \langle x(t_1)\, x(t_2)\rangle &= \frac{A}{m^2\Gamma^2} e^{-\gamma(t_1+t_2)} \int^{t_2}_{-\infty} dt' e^{2\gamma t'} \sinh\big[\Gamma(t'-t_1)\big] \, \sinh\big[\Gamma(t'-t_2)\big] \\ &= \frac{A}{8m^2\Gamma^2} e^{-\gamma(t_1+t_2)}\Bigg[\frac{e^{-\Gamma t_1} e^{(2\gamma+\Gamma)t_2}}{\gamma+\Gamma} + \frac{e^{\Gamma t_1}e^{(2\gamma-\Gamma)t_2}}{\gamma-\Gamma} \nonumber \\ &\qquad\qquad\qquad\qquad\qquad - \frac{e^{-\Gamma t_1} e^{(\Gamma+2\gamma)t_2} + e^{\Gamma t_1} e^{(-\Gamma+2\gamma)t_2}}{\gamma}\Bigg] \\ &= \frac{A}{8m^2\Gamma\gamma} \left[\frac{e^{-(\gamma-\Gamma)(t_1-t_2)}}{\gamma-\Gamma} - \frac{e^{-(\gamma+\Gamma)(t_1-t_2)}}{\gamma+\Gamma} \right].\end{align}\] Por lo tanto,\[\begin{align} \left\langle [x(t+\Delta t) - x(t)]^2\right\rangle &= 2\Big[\left\langle x(t)^2\right\rangle - \left\langle x(t+\Delta t) x(t)\right\rangle\Big] \\ &= \frac{A}{4m^2\Gamma\gamma} \left[\frac{1-e^{-(\gamma-\Gamma)\Delta t}}{\gamma-\Gamma} - \frac{1-e^{-(\gamma+\Gamma)\Delta t}}{\gamma+\Gamma} \right].\end{align}\]


    This page titled 11.5: Ejercicios is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.