Loading [MathJax]/jax/output/HTML-CSS/jax.js
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

11A: Velocidad Relativa

( \newcommand{\kernel}{\mathrm{null}\,}\)

Los vectores agregan como vectores, no como números. Excepto en ese caso muy especial en el que los vectores que estás agregando se encuentran a lo largo de una y la misma línea, no puedes simplemente sumar las magnitudes de los vectores.

Imagina que tienes una pistola de dardos con una velocidad de hocico de45mph. Además imagina que estás en un autobús viajando por una autopista recta a55mph y que apuntas el arma para que el cañón quede nivelado y apuntando directamente hacia adelante, hacia la parte delantera del autobús. Asumiendo que no hay retroceso, ya que sale del hocico de la pistola, ¿qué tan rápido viaja el dardo con relación a la carretera? ¡Así es! 100mph. El dardo ya está viajando hacia adelante en55mph relativo a la carretera solo porque está en un autobús que se mueve en55mph relativo a la carretera. A eso se suma la velocidad de45mph que adquiere como consecuencia del disparo de la pistola y se obtiene la velocidad total del dardo con respecto a la carretera. Este problema es un ejemplo de una clase de problemas de adición de vectores que vienen bajo el título de “Velocidad Relativa”. Es un problema de adición de vectores particularmente fácil porque ambos vectores de velocidad están en la misma dirección. El único reto es el diagrama de adición vectorial, ya que el resultante está justo encima de los otros dos. Lo desplazamos a un lado un poco en el diagrama de abajo para que puedas ver todos los vectores. Definiendo

VBR to be the velocity of the bus relative to the road,
  • VDB to be the velocity of the dart relative to the bus, and
  • VDR to be the velocity of the dart relative to the road; we have
  • alt

    The vector addition problem this illustrates is
    VDR=VBR+VDB

    If we define the forward direction to be the positive direction,
    alt

    then, because the vectors we are adding are both in the same direction, we are indeed dealing with that very special case in which the magnitude of the resultant is just the sum of the magnitudes of the vectors we are adding:

    VDR=VBR+VDB

    VDR=VBR+VDB

    VDR=55mph+45mph

    VDR=100mph

    VDR=100mph in the direction in which the bus is traveling

    Ya conoces todos los conceptos que necesitas saber para resolver problemas de velocidad relativa (sabes qué es la velocidad y sabes cómo hacer la adición de vectores) así que lo mejor que podemos hacer aquí es brindarte algunos ejemplos más trabajados. Acabamos de abordar el tipo más fácil de problema de velocidad relativa, el tipo en el que todas las velocidades están en una y la misma dirección. El segundo tipo más fácil es el tipo en el que las dos velocidades a sumar están en direcciones opuestas.

    Un autobús viaja a lo largo de una autopista recta a una constante55mph. A person sitting at rest on the bus fires a dart gun that has a muzzle velocity of 45mph straight backward, (toward the back of the bus). Find the velocity of the dart, relative to the road, as it leaves the gun.

    Again defining:

    • VBR to be the velocity of the bus relative to the road,
    • VDB to be the velocity of the dart relative to the bus, and
    • VDR to be the velocity of the dart relative to the road, and

    defining the forward direction to be the positive direction; we have
    alt

    VDR=VBR+VDB

    VDR=VBR|VDB|

    VDR=55mph45mph

    VDR=10mph

    VDR=10mph in the direction in which the bus is traveling

    It would be odd looking at that dart from the side of the road. Relative to you it would still be moving in the direction that the bus is traveling, tail first, at 10mph.

    The next easiest kind of vector addition problem is the kind in which the vectors to be added are at right angles to each other. Let’s consider a relative velocity problem involving that kind of vector addition problem.

    Un niño sentado en un automóvil que viaja hacia el norte en65mph aims a BB gun (a gun which uses a compressed gas to fire a small metal or plastic ball called a BB), with a muzzle velocity of 185mph, due east, and pulls the trigger. Recoil (the backward movement of the gun resulting from the firing of the gun) is negligible. In what compass direction does the BB go?

    Defining

    • VCR to be the velocity of the car relative to the road,
    • VBC to be the velocity of the BB relative to the car, and
    • VBR to be the velocity of the BB relative to the road; we have

    alt

    tanθ=VBCVCR

    θ=tan1VBCVCR

    θ=tan1185mph65mph

    θ=70.6

    The BB travels in the direction for which the compass heading is 70.6.

    Un barco viaja a través de un río que fluye hacia el este en8.50m/s. The compass heading of the boat is 15.0. Relative to the water, the boat is traveling straight forward (in the direction in which the boat is pointing) at 11.2m/s. How fast and which way is the boat moving relative to the banks of the river?

    Okay, here we have a situation in which the boat is being carried downstream by the movement of the water at the same time that it is moving relative to the water. Note the given information means that if the water was dead still, the boat would be going 11.2 m/s at 15.0 East of North. The water, however, is not still. Defining

    • VWG to be the velocity of the water relative to the ground,
    • VBW to be the velocity of the boat relative to the water, and
    • VBG to be the velocity of the boat relative to the ground; we have

    alt

    Solving this problem is just a matter of following the vector addition recipe. First we define +x to be eastward and +y to be northward. Then we draw the vector addition diagram for VWG. Breaking it up into components is trivial since it lies along the x-axis:

    alt

    Breaking VBW does involve a little bit of work:

    alt

    Now we add the x components to get the x-component of the resultant

    VBGx=VWGx+VBWx

    VBGx=8.50ms+2.899ms

    VBGx=11.299ms

    and we add the y components to get the y-component of the resultant:

    VBGy=VWGy+VBWy

    VBGy=0ms+10.82ms

    VBGy=10.82ms

    Now we have both components of the velocity of the boat relative to the ground. We need to draw the vector component diagram for VBG to determine the direction and magnitude of the velocity of the boat relative to the ground.

    alt

    We then use the Pythagorean Theorem to get the magnitude of the velocity of the boat relative to the ground,

    VBG=V2BGx+V2BGy

    VBG=(11.299m/s)2+(10.82m/s)2

    VBG=15.64m/s

    and the definition of the tangent to determine the direction of VBG:

    tanθ=VBGyVBGx

    θ=tan1VBGyVBGx

    θ=tan110.82m/s11.299m/s

    θ=43.8

    Hence, VBG=15.64m/s at 43.8 North of East.


    This page titled 11A: Velocidad Relativa is shared under a CC BY-SA 2.5 license and was authored, remixed, and/or curated by Jeffrey W. Schnick via source content that was edited to the style and standards of the LibreTexts platform.

    Support Center

    How can we help?