Saltar al contenido principal
LibreTexts Español

8.6: Gradientes - Cómo encontrarlos

  • Page ID
    88939
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    El gradiente de una variable es solo el cambio en esa variable en función de la distancia. Por ejemplo, el gradiente de temperatura es solo el cambio de temperatura dividido por la distancia sobre la que está cambiando: ΔT/δDistance. El gradiente es un vector y por lo tanto tiene una dirección así como una magnitud.

    2019-09-06 9.50.11.png
    Mapa de temperatura superficial para Norteamérica el 8 de septiembre de 2012. Las temperaturas están en o F. Para un punto en el oeste de Kentucky, el gradiente de temperatura es hacia el sureste. Crédito: Unisys

    Considere la gráfica de contorno de temperatura superficial de la NOAA para el 8 de septiembre de 2012 en la figura anterior. Una fuerte variación de temperatura se extiende en el este y sur de Estados Unidos desde Nueva York hasta Texas. ¿Cómo cuantificamos esta variación de temperatura? Primero tenemos que especificar dónde queremos medir el gradiente de temperatura. Entonces simplemente necesitamos elegir isotermas a cada lado del punto, tomar la diferencia entre las isotermas, averiguar qué tan separadas están en distancia horizontal y dividir el cambio de temperatura entre las isotermas por la distancia entre las isotermas. La dirección para el gradiente es en la normal (perpendicular a las isotermas) desde las temperaturas más bajas hasta las temperaturas más altas. Es bastante fácil averiguar dónde apunta el vector de gradiente con solo un examen rápido, pero es un poco más difícil averiguar cuál es la magnitud del gradiente y la dirección real.

    Ahora mira este video (2:12) sobre cómo encontrar distancias:

    Encontrar distancias

    Haga clic aquí para ver la transcripción del video Encontrar distancias.

    A menudo nos interesa encontrar distancias en un mapa para poder calcular las cantidades que nos interesan, como el gradiente de temperatura. Obsérvese primero que a menudo la proyección del mapa que tenemos no tiene este-oeste, paralela y recta transversal. De hecho, la línea este-oeste está un poco curvada, así que tenlo en cuenta cuando estés haciendo tus cálculos. También tenga en cuenta que las líneas norte-sur corren un poco no paralelas también. Entonces, ¿cómo encontramos distancias? Bueno, hay muchas maneras diferentes, pero una buena manera es tomar una distancia conocida en el mapa, escalarla con una regla, y luego usar esa regla en otros lugares para darnos distancias en otros lugares. Entonces, por ejemplo, sabemos que la altura de Pensilvania entre las dos fronteras paralelas, la frontera norte y sur es de 135 millas náuticas. Entonces podemos escalar eso con una regla, y aquí tengo una regla. Puse la regla, y veo, en este caso particular, la distancia entre los dos es de aproximadamente exactamente 1 centímetro o 10 milímetros. Entonces lo que eso significa es que cada milímetro en mi escala es igual a 13.5 millas náuticas en el mapa. Entonces puedo usar esto en otros lugares para medir otras distancias. Entonces, por ejemplo, si quiero saber la altura de Kansas entre sus fronteras paralelas Norte y Sur, puedo poner mi gobernante ahí. Y si miro con atención, me sale un número que es de unos 13 y 1/2 milímetros. Entonces 13 y 1/2 veces 13 y 1/2 es aproximadamente 182. Y eso es lo que yo diría que es esta distancia. La distancia real es de 180 millas náuticas, así que de hecho, el escalado que tengo es en realidad bastante bueno.

    Matemáticamente, si conocemos la expresión algebraica para el cambio de temperatura, tal que T = T (x, y), podemos encontrar el gradiente usando el operador del, que también se llama operador de gradiente.

    Recordemos al operador del:

    \[\vec{\nabla}=\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}\]

    Si solo estamos viendo cambios en x e y, entonces podemos definir un operador del horizontal:

    \[\vec{\nabla}_{H}=\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}\]

    En cualquier punto, podemos determinar el gradiente de la temperatura:

    \[\vec{\nabla}_{H} T=\vec{i} \frac{\partial T}{\partial x}+\vec{j} \frac{\partial T}{\partial y}\]

    Tenga en cuenta que esta cantidad tiene dimensiones de θ/Lθ/L y una magnitud y una dirección. La dirección del gradiente es siempre normal a las isolíneas y apuntando en la dirección de un incremento. Podemos definir el vector normal, que es solo el vector unitario en la dirección de la temperatura creciente. Llamaremos a este vector normal n.

    2019-09-06 9.53.47.png
    Ejemplo de un gradiente y la matemática requerida para calcular la magnitud y dirección del gradiente.

    Crédito: H.N. Shirer

    Podemos calcular un gradiente para cada punto del mapa, pero para ello necesitamos conocer el cambio en la temperatura sobre una distancia que se centra en nuestro punto elegido. Un enfoque es calcular los gradientes en las direcciones x e y de forma independiente y luego determinar la magnitud mediante:

    \[\left|\vec{\nabla}_{H} T\right|=\sqrt{\left(\frac{\partial T}{\partial x}\right)^{2}+\left(\frac{\partial T}{\partial y}\right)^{2}}=\left|\frac{\partial T}{\partial n}\right|\]

    y la dirección por:

    \[\mu=\tan ^{-1}\left(\frac{\partial T / \partial y}{\partial T / \partial x}\right)\]

    Podemos programar una computadora para hacer estos cálculos.

    Sin embargo, muchas veces solo queremos estimar el gradiente. El gradiente se puede determinar observando los contornos a cada lado del punto y calculando el cambio de temperatura a lo largo de la distancia. Estas derivadas parciales pueden ser aproximadas por pequeños cambios finitos en temperaturas y distancias, de manera que es reemplazado por Δ en todos los lugares de estas ecuaciones. Podemos calcular gradientes usando “diferencias centradas” como se muestra en las figuras a continuación.

    2019-09-06 9.58.11.png
    Calcular el gradiente de temperatura en las direcciones x (arriba) e y (abajo) usando el método de diferencia centrada. Crédito: H.N. Shirer

    Luego calculamos la magnitud con la Ecuación [8.12] y la dirección con la Ecuación [8.13], donde reemplazamos las derivadas parciales por las pequeñas diferencias finitas en todos los lugares de estas ecuaciones.

    2019-09-06 9.59.28.png

    Ejemplo de una estimación de los gradientes en las direcciones x e y. Para hacerse una idea de la escala horizontal, se pueden estimar distancias utilizando el tamaño conocido de un estado o país, en este caso, Pensilvania, que es en promedio 470 km (254 nm, millas náuticas, 290 millas) en la dirección x (este-oeste) y 250 km (135 nm, 155 millas) en la y (norte-sur) para las partes donde las fronteras norte y sur son líneas paralelas. Crédito: H.N. Shirer

    La magnitud y dirección son:

    \[\left|\nabla_{H} T\right|=\sqrt{\left(\frac{\Delta T}{\Delta x}\right)^{2}+\left(\frac{\Delta T}{\Delta y}\right)^{2}}=\sqrt{\left(\frac{4^{\circ} \mathrm{F}}{45 \mathrm{nm}}\right)^{2}+\left(\frac{-4^{\circ} \mathrm{F}}{84 \mathrm{nm}}\right)^{2}}=0.1^{\circ} \mathrm{F} / \mathrm{nm}\]

    \(\mu=\tan ^{-1}\left(\frac{\Delta T / \Delta y}{\Delta T_{/ \Delta x}}\right)=\tan ^{-1}\left(\frac{-4 / 84}{4 / 45}\right)=-28^{\circ},\)que apunta hacia el sureste

    Al calcular el arcotangente, tenga en cuenta que la función tangente tiene los mismos valores cada 180 o, o cada π en radianes. Si obtienes una respuesta para el arcotangente que es 45 o, ¿cómo sabes si el ángulo es realmente 45 o 45 o + 180 o = 225 o? El vector de gradiente siempre apunta hacia el aire de mayor temperatura, así que elige siempre el ángulo para que el vector de gradiente apunte hacia el aire más cálido.

    Resumen del proceso para calcular el gradiente de temperatura:

    1. Determina la escala de distancia por cualquier medio que puedas. A veces se te da; a veces puedes escalar una regla; a veces solo la estimas usando el tamaño de límites conocidos.
    2. Determinar el espaciamiento entre las isotermas.
    3. Encuentre el cambio de temperatura en las direcciones x e y usando el método de diferencia centrada. Estos dos números, ΔT/δX y ΔT/δYδT/δX y ΔT/δY ΔT/δX y ΔT/δYδT/δX y ΔT/δY pueden ser positivos o negativos.
    4. Calcular la magnitud encontrando la raíz cuadrada de los cuadrados de los gradientes en las direcciones x e y (es decir, ΔT/δX y ΔT/δYδT/δX y ΔT/δY
    5. Calcular la dirección del vector de gradiente encontrando el arcotangente del gradiente y dividido por el gradiente x. Preste atención a la dirección, asegúrese de que apunte hacia el aire más cálido.

    Ahora mira este video (3:52) sobre cómo encontrar gradientes:

    Encontrar Gradientes

    Haga clic aquí para ver la transcripción del video Encontrar gradientes.

    Podemos calcular el gradiente usando el método que se describe en la lección. Escojamos un punto en Pensilvania por aquí, y luego calcularemos el gradiente para ese punto. Primero veremos el gradiente en la dirección x que va a lo largo, y es paralelo con los límites Norte y Sur de Pensilvania. Usaremos el método de diferencias de centro que se describe. Vamos a ver este contorno aquí, esta isoterma, y este de aquí en el otro lado. Y observamos que esta distancia aquí es muy, muy similar a la distancia de Pensilvania entre las fronteras paralelas, que es de 135 millas náuticas. Y así cada uno de estos contornos es de cuatro grados Fahrenheit. Entonces tenemos dos de ellos, así que 8 divididos por 135 millas náuticas nos da un gradiente en la dirección x de 0.059 grados Fahrenheit por millas náuticas. Ahora podemos hacer la dirección y, así que aquí elegimos dos puntos. Uno aquí y otro por aquí para estar en los gradientes. Y notamos que esto es un poco más de la mitad de la altura de Pensilvania. En realidad se trata de unas 80 millas náuticas. Pero también tenga en cuenta que a medida que y va más positiva, la temperatura se vuelve más negativa y por lo tanto, tenemos que usar menos 8 sobre 80. Y obtenemos, para el gradiente en la dirección y, menos 0.1 grados Fahrenheit por millas náuticas. Cuando metemos estos para obtener la magnitud— es la raíz cuadrada de los cuadrados— vemos que terminamos con 0.12 grados Fahrenheit por milla náutica con una magnitud del gradiente. Para encontrar la dirección del gradiente vemos que mu, el ángulo con respecto al eje x— por lo que este es un ángulo matemático. Es igual al arcotangente del gradiente en y dividido por el gradiente en x Y así sería el arcotangente de menos 0.1 sobre 0.059, que es menos 59 grados. Y eso es, claro, medido desde el eje x aquí. Entonces eso se mide desde esta dirección aquí así, y así eso es menos 59. Y es lo mismo que si íbamos todo el camino y obtendríamos 301 para alfa si estuviéramos mirando el ángulo matemático. Ahora, podemos mirar y hacernos una idea de gradientes y otros lugares muy rápido, así que tomemos este punto en el centro de Oregon. Entonces ahora x va así por aquí, y así vemos que el gradiente en dirección Este Oeste, o x dirección es— para ir a otro país hay que ir muy, muy lejos, y así que eso sería de 8 grados. Es hasta ahora el realmente el gradiente es esencialmente 0. Mientras que si vamos en dirección Norte Sur —es decir en la dirección y aquí— vemos que aquí hay una distancia bastante sustancial. Y así, como esto es de 8 grados, al igual que esto es 8 grados por aquí, entonces lo que eso significa es que el gradiente va a ser bastante menor en esta dirección que en Pensilvania aquí donde las isotermas están mucho, mucho más juntas. Entonces esperaríamos un gradiente que sea un cuarto o un quinto del gradiente que obtuvimos para Pensilvania, y así será muy débil. No obstante, apuntará hacia el aire más caliente, y se verá algo así.

    Una palabra sobre encontrar gradientes en el mundo real. A veces el método de diferencias centradas es difícil de aplicar porque el gradiente es demasiado este-oeste o norte-sur. Por ejemplo, en el mapa de temperatura al inicio de esta sección, el gradiente x es difícil de determinar por el método de diferencia centrada en el panhandle de Oklahoma y el gradiente y es difícil de determinar en el centro de Pensilvania porque en ambos casos, el la temperatura apenas cambia. En estos casos, se podría decir que el gradiente en esa dirección es igual a 0, pero entonces su programa de computadora podría tener dificultades para encontrar el arcotangente. Una forma de evitar este problema es poner en un número muy pequeño para el gradiente en esa dirección, digamos 1 millonésima parte de sus números de gradiente típicos, para hacer el cálculo.

    Una segunda palabra sobre la búsqueda de gradientes en el mundo real. Cuando encuentra gradientes de temperatura a partir de un mapa de temperatura, a veces es difícil determinar el gradiente de temperatura en algunos lugares porque las isotermas no están espaciadas uniformemente y pueden tener curvas. ¡No te desesperes! Usa tu mejor juicio en cuanto a cuáles son los gradientes. Verifique sus respuestas para la magnitud y dirección del vector de gradiente de temperatura estimando la magnitud y dirección observando la normal a las isotermas en esa ubicación y apuntando el vector de gradiente al aire más cálido. Si tu dirección calculada es de 160 grados cuando tu chequeo del globo ocular dice alrededor de 220 grados, vuelve a revisar tus matemáticas.


    This page titled 8.6: Gradientes - Cómo encontrarlos is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by William Brune (John A. Dutton: e-Education Institute) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.