Saltar al contenido principal
LibreTexts Español

10.11: Vea cómo el viento degradado tiene un papel en el clima.

  • Page ID
    88905
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \[V_{g}=-\frac{1}{f} \frac{\partial \Phi}{\partial n}\]

    Reemplazar la fuerza de gradiente de presión\(\left(\frac{\partial \Phi}{\partial n}\right)\) con\(-f V_{g}\) en la ecuación de balance de gradiente da como resultado una ecuación que relaciona estas velocidades de gradiente con la velocidad geostrófica:

    \[\frac{V^{2}}{R}+f V-f V_{g}=0 \quad\) or \(\quad \frac{V_{g}}{V}=1+\frac{V}{f R}\]

    En un bajo regular (medio, figura abajo), R > 0 para que V g > V. La velocidad en una curva alrededor de un área de baja presión es subgeostrófica.

    En un alto regular (derecha, figura abajo), R < 0 para que V g < V. La velocidad en una curva alrededor de un área de alta presión es supergeastrófica.

    2019-10-13 6.53.41.png

    Balance de gradiente en el hemisferio norte. izquierda: Equilibrio geostrófico; centro: balance bajo regular; derecha: balance alto regular. Tenga en cuenta que el PGF es independiente de la velocidad pero tanto la fuerza de Coriolis como la aceleración centrífuga dependen de la velocidad. En la figura la velocidad geostrófica está representada por v g y la velocidad del viento en gradiente se representa por v gr.

    Crédito: H.N. Shirer

    Piénsalo de esta manera. La fuerza del gradiente de presión es independiente de la velocidad y así siempre está ahí para un gradiente geopotencial dado. En un mínimo regular, las fuerzas centrífuga y Coriolis, ambas dependientes de la velocidad, se suman para igualar la fuerza del gradiente de presión, mientras que para el flujo geastrófico, solo la fuerza de Coriolis lo hace. Así, la velocidad en el caso de balance de gradiente debe ser menor que la velocidad geotrófica para el mismo gradiente geopotencial.

    Entonces, ¿cómo afectan el flujo subgeotrófico y supergeotrófico al clima?

    El flujo supergeotrófico alrededor de crestas y el flujo subgeotrófico alrededor de los canales ayudan a explicar los patrones de convergencia y divergencia en lo alto que están vinculados a movimientos verticales.

    Mira la figura de abajo, comenzando por la izquierda. Pasar del flujo geastrófico en la sección recta al flujo supergeostrófico en el pico de la cresta causa divergencia en lo alto. Esta divergencia provoca una velocidad vertical ascendente, lo que provoca un área de baja presión y convergencia en la superficie. A medida que el aire redondea el pico de la cresta, se ralentiza para volverse geastrófico, y luego continúa ralentizándose aún más a medida que el flujo se vuelve subgeostrófico alrededor del canal, causando así convergencia en lo alto. Esta convergencia en lo alto provoca una velocidad descendente, lo que provoca alta presión y divergencia en la superficie.

    2019-10-13 6.56.05.png
    Velocidades subgeastróficas y supergeastróficas en flujo alto en el hemisferio norte.

    Crédito: H.N. Shirer

    Por lo tanto, a favor del viento de una depresión es la ubicación preferida para la divergencia en lo alto, el movimiento ascendente y una superficie baja. A favor del viento de una cresta es la ubicación preferida para la convergencia en lo alto, el movimiento hacia abajo y una superficie alta. Dado que las crestas se forman alrededor de alta presión en lo alto y los canales se forman alrededor de baja presión en lo alto, vemos que el aloft alto está desplazado en relación con la superficie baja y el bajo alto está desplazado con respecto a la superficie alta.

    Por lo tanto, el flujo subgeotrófico y el flujo supergeotrófico en lo alto están directamente relacionados con la formación de clima en la superficie. Otros factores como la vorticidad también son muy importantes. El siguiente video (1:09) describe cómo el flujo de viento gradiente en lo alto puede afectar el clima superficial.

    Video bajo en la superficie del canal Aloft

    Haga clic aquí para ver la transcripción del video Trough Aloft Surface Low.

    Veamos cómo el flujo de viento degradado en lo alto puede afectar el clima superficial. Observe cómo cambia la velocidad a medida que el aire fluye alrededor de la cresta y luego una depresión en lo alto. Inicialmente, la velocidad es aproximadamente geotrófica y flujo lineal. Al redondear la cresta, se acelera. Y luego vuelve a ralentizar a geastrófica en la sección recta. A medida que atraviesa el canal, alrededor del desván de baja presión, se ralentiza a subgeostrófico y luego acelera hasta geastrófico en la siguiente sección recta. La aceleración provoca divergencia en alto. Y la desaceleración provoca convergencia en alto, tal como aprendiste en la lección nueve. También se vio cómo la convergencia en lo alto puede llevar a la divergencia en la superficie. Esto contribuye a una superficie alta. Y cómo la divergencia en lo alto puede conducir a la convergencia en la superficie, lo que contribuye a una superficie baja. Por lo tanto, el flujo gradiente contribuye al clima superficial. A menudo vemos una superficie baja que se forma en el lado a favor del viento de una depresión.


    10.11: Vea cómo el viento degradado tiene un papel en el clima. is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.