Saltar al contenido principal

# 4.3: Método Zig-Zag de Cantor

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Template:MathJaxZach

Ya hemos considerado algunas enumeraciones “fáciles”. Ahora vamos a considerar algo un poco más difícil. Considere el conjunto de pares de números naturales, que definimos en la sección 1.5 así:$\Nat \times \Nat = \Setabs{\tuple{n,m}}{n,m \in \Nat}\nonumber$ Podemos organizar estos pares ordenados en una matriz, así:$\begin{array}{ c | c | c | c | c | c} & \mathbf 0 & \mathbf 1 & \mathbf 2 & \mathbf 3 & \dots \\ \hline \mathbf 0 & \tuple{0,0} & \tuple{0,1} & \tuple{0,2} & \tuple{0,3} & \dots \\ \hline \mathbf 1 & \tuple{1,0} & \tuple{1,1} & \tuple{1,2} & \tuple{1,3} & \dots \\ \hline \mathbf 2 & \tuple{2,0} & \tuple{2,1} & \tuple{2,2} & \tuple{2,3} & \dots \\ \hline \mathbf 3 & \tuple{3,0} & \tuple{3,1} & \tuple{3,2} & \tuple{3,3} & \dots \\ \hline \vdots & \vdots & \vdots & \vdots & \vdots & \ddots\\ \end{array}\nonumber$ Claramente, cada par ordenado en$$\Nat \times \Nat$$ aparecerá exactamente una vez en la matriz. En particular,$$\tuple{n,m}$$ aparecerá en la fila$$n$$ th y$$m$$ th columna. Pero, ¿cómo organizamos los elementos de tal matriz en una lista “unidimensional”? El patrón en la matriz a continuación demuestra una manera de hacer esto (aunque por supuesto hay muchas otras opciones):$\begin{array}{ c | c | c | c | c | c | c} & \mathbf 0 & \mathbf 1 & \mathbf 2 & \mathbf 3 & \mathbf 4 &\dots \\ \hline \mathbf 0 & 0 & 1& 3 & 6& 10 &\ldots \\ \hline \mathbf 1 &2 & 4& 7 & 11 & \dots &\ldots \\ \hline \mathbf 2 & 5 & 8 & 12 & \ldots & \dots&\ldots \\ \hline \mathbf 3 & 9 & 13 & \ldots & \ldots & \dots & \ldots \\ \hline \mathbf 4 & 14 & \ldots & \ldots & \ldots & \dots & \ldots \\ \hline \vdots & \vdots & \vdots & \vdots & \vdots&\ldots & \ddots\\ \end{array}\nonumber$ Este patrón se llama método zig-zag de Cantor. Enumera de la$$\Nat \times \Nat$$ siguiente manera:$\tuple{0,0}, \tuple{0,1}, \tuple{1,0}, \tuple{0,2}, \tuple{1,1}, \tuple{2,0}, \tuple{0,3}, \tuple{1,2}, \tuple{2,1}, \tuple{3,0}, \dots\nonumber$ Y esto establece lo siguiente:

Proposición$$\PageIndex{1}$$

$$\Nat \times \Nat$$es contable.

Comprobante. Vamos a$$f \colon \Nat \to \Nat\times\Nat$$ llevar cada uno$$k \in \Nat$$ a la tupla$$\tuple{n,m} \in \Nat \times \Nat$$ tal que$$k$$ sea el valor de la fila$$n$$ th y$$m$$ th columna en la matriz zig-zag de Cantor. ◻

Esta técnica también generaliza bastante bien. Por ejemplo, podemos usarlo para enumerar el conjunto de triples ordenados de números naturales, es decir:$\Nat \times \Nat \times \Nat = \Setabs{\tuple{n,m,k}}{n,m,k \in \Nat}\nonumber$ Pensamos en$$\Nat \times \Nat \times \Nat$$ como el producto cartesiano de$$\Nat \times \Nat$$ con$$\Nat$$, es decir,$\Nat^3 = (\Nat \times \Nat) \times \Nat = \Setabs{\tuple{\tuple{n,m},k}}{n, m, k \in \Nat }\nonumber$ y así podemos enumerar $$\Nat^3$$con una matriz etiquetando un eje con la enumeración de$$\Nat$$, y el otro eje con la enumeración de$$\Nat^2$$:$\begin{array}{ c | c | c | c | c | c} & \mathbf 0 & \mathbf 1 & \mathbf 2 & \mathbf 3 & \dots \\ \hline \mathbf{\tuple{0,0}} & \tuple{0,0,0} & \tuple{0,0,1} & \tuple{0,0,2} & \tuple{0,0,3} & \dots \\ \hline \mathbf{\tuple{0,1}} & \tuple{0,1,0} & \tuple{0,1,1} & \tuple{0,1,2} & \tuple{0,1,3} & \dots \\ \hline \mathbf{\tuple{1,0}} & \tuple{1,0,0} & \tuple{1,0,1} & \tuple{1,0,2} & \tuple{1,0,3} & \dots \\ \hline \mathbf{\tuple{0,2}} & \tuple{0,2,0} & \tuple{0,2,1} & \tuple{0,2,2} & \tuple{0,2,3} & \dots\\ \hline \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ \end{array}\nonumber$ Así, al usar un método como el método zig-zag de Cantor, podemos obtener de manera similar una enumeración de $$\Nat^3$$. Y podemos seguir adelante, obteniendo enumeraciones de$$\Nat^n$$ para cualquier número natural$$n$$. Entonces, tenemos:

Proposición$$\PageIndex{2}$$

$$\Nat^n$$es contable, para cada$$n \in \Nat$$.

This page titled 4.3: Método Zig-Zag de Cantor is shared under a CC BY license and was authored, remixed, and/or curated by Richard Zach et al. (Open Logic Project) .