10.6: Construcción de un Modelo
- Page ID
- 103600
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)En este momento no nos preocupa\(\eq[][]\), i.e., we only want to show that a consistent set \(\Gamma\) of sentences not containing \(\eq[][]\) is satisfiable. We first extend \(\Gamma\) to a consistent, complete, and saturated set \(\Gamma^*\). In this case, the definition of a model \(\Struct{M(\Gamma^*)}\) is simple: We take the set of closed terms of \(\Lang{L'}\) as the domain. We assign every constant symbol to itself, and make sure that more generally, for every closed term \(t\), \(\Value{t}{M(\Gamma^*)} = t\). The predicate symbols are assigned extensions in such a way that an atomic sentence is true in \(\Struct{M(\Gamma^*)}\) iff it is in \(\Gamma^*\). This will obviously make all the atomic sentences in \(\Gamma^*\) true in \(\Struct{M(\Gamma^*)}\). The rest are true provided the \(\Gamma^*\) we start with is consistent, complete, and saturated.
Definición\(\PageIndex{1}\): Term model
\(\Gamma^*\)Sea un conjunto completo y consistente, saturado de oraciones en un idioma\(\Lang L\). El término modelo\(\Struct M(\Gamma^*)\) de\(\Gamma^*\) es la estructura definida de la siguiente manera:
-
El dominio\(\Domain{M(\Gamma^*)}\) es el conjunto de todos los términos cerrados de\(\Lang L\).
-
La interpretación de un símbolo constante\(c\) es\(c\) en sí misma:\(\Assign{c}{M(\Gamma^*)} = c\).
-
Al símbolo de función\(f\) se le asigna la función que, dado como argumentos los términos cerrados\(t_1\),...\(t_n\), tiene como valor el término cerrado\(f(t_1, \dots, t_n)\):\[\Assign{f}{M(\Gamma^*)}(t_1, \dots, t_n) = f(t_1,\dots, t_n)\nonumber\]
-
Si\(R\) es un símbolo de predicado\(n\) -place, entonces\[\tuple{t_1, \dots, t_n} \in \Assign{R}{M(\Gamma^*)} \text{ iff } \Atom{R}{t_1, \dots, t_n} \in \Gamma^*.\nonumber\]
Una estructura\(\Struct{M}\) may make an existentially quantified sentence \(\lexists{x}{A(x)}\) true without there being an instance \(A(t)\) that it makes true. Una estructura\(\Struct{M}\) may make all instances \(A(t)\) of a universally quantified sentence \(\lforall{x}{A(x)}\) true, without making \(\lforall{x}{A(x)}\) true. Esto se debe a que en general no todos los elementos de\(\Domain{M}\) es el valor de un término cerrado (\(\Struct{M}\)puede no estar cubierto). Esta es la razón por la que la relación de satisfacción se define a través de asignaciones variables. Sin embargo, para nuestro modelo de términos\(\Struct{M(\Gamma^*)}\) esto no sería necesario, porque está cubierto. Este es el contenido del siguiente resultado.
\(\Struct M(\Gamma^*)\)Sea el término modelo de Definición\(\PageIndex{1}\).
-
\(\Sat{M(\Gamma^*)}{\lexists{x}{A(x)}}\)iff\(\Sat{M}{A(t)}\) por al menos un término\(t\).
-
\(\Sat{M(\Gamma^*)}{\lforall{x}{A(x)}}\)iff\(\Sat{M}{A(t)}\) para todos los términos\(t\).
Comprobante.
-
Por Proposición 5.12.4,\(\Sat{M(\Gamma^*)}{\lexists{x}{A(x)}}\) iff para al menos una asignación variable\(s\),\(\Sat[,s]{M(\Gamma^*)}{A(x)}\). Como\(\Domain{M(\Gamma^*)}\) consiste en los términos cerrados de\(\Lang{L}\), este es el caso si hay al menos un término cerrado\(t\) tal que\(s(x) = t\) y\(\Sat[,s]{M(\Gamma^*)}{A(x)}\). Por Proposición 5.13.3,\(\Sat[,s]{M(\Gamma^*)}{A(x)}\) iff\(\Sat[,s]{M(\Gamma^*)}{A(t)}\), donde\(s(x) = t\). Por la Proposición 5.12.3,\(\Sat[,s]{M(\Gamma^*)}{A(t)}\) iff\(\Sat{M(\Gamma^*)}{A(t)}\), ya que\(A(t)\) es una oración.
-
Ejercicio.
◻
Problema\(\PageIndex{1}\)
Completar el comprobante de Proposición\(\PageIndex{1}\).
Lema\(\PageIndex{1}\): Truth Lemma
Supongamos\(A\) does not contain \(\eq[][]\). Then\(\Sat{M(\Gamma^*)}{A}\) iff\(A \in \Gamma^*\).
Comprobante. Demostramos ambas direcciones simultáneamente, y por inducción en\(A\).
-
\(\indcase{A}{\lfalse}\) \({\SatN{M(\Gamma^*)}{\lfalse}}\) by definition of satisfaction. On the other hand, \(\lfalse \notin \Gamma^*\) since \(\Gamma^*\) is consistent.
-
\(\indcase{A}{R(t_1, \dots, t_n)}\) \(\Sat{M(\Gamma^*)}{\Atom{R}{t_1, \dots, t_n}}\) iff \(\tuple{t_1, \dots, t_n} \in \Assign{R}{M(\Gamma^*)}\) (by the definition of satisfaction) iff \(R(t_1, \dots, t_n) \in \Gamma^*\) (by the construction of \(\Struct M(\Gamma^*)\)).
-
\(\indcase{A}{\lnot B}\) \(\Sat{M(\Gamma^*)}{\indfrm}\) iff \({\SatN{M(\Gamma^*)}{B}}\) (by definition of satisfaction). By induction hypothesis, \({\SatN{M(\Gamma^*)}{B}}\) iff \(B \notin \Gamma^*\). Since \(\Gamma^*\) is consistent and complete, \(B \notin \Gamma^*\) iff \(\lnot B \in \Gamma^*\).
-
\(\indcase{A}{B \land C}\) exercise.
-
\(\indcase{A}{B \lor C}\) \(\Sat{M(\Gamma^*)}{\indfrm}\) iff \(\Sat{M(\Gamma^*)}{B}\) or \(\Sat{M(\Gamma^*)}{C}\) (by definition of satisfaction) iff \(B \in \Gamma^*\) or \(C \in \Gamma^*\) (by induction hypothesis). This is the case iff \((B \lor C) \in \Gamma^*\) (by Proposition 10.3.1(3)).
-
\(\indcase{A}{B \lif C}\) exercise.
-
\(\indcase{A}{\lforall{x}{B(x)}}\) exercise.
-
\(\indcase{A}{\lexists{x}{B(x)}}\) \(\Sat{M(\Gamma^*)}{\indfrm}\) iff \(\Sat{M(\Gamma^*)}{B(t)}\) for at least one term \(t\) (Proposition \(\PageIndex{1}\)). By induction hypothesis, this is the case iff \(B(t) \in \Gamma^*\) for at least one term \(t\). By Proposition 10.4.2, this in turn is the case iff \(\lexists{x}{B(x)} \in \Gamma^*\).
◻
Problema\(\PageIndex{2}\)
Completar el comprobante de Lemma\(\PageIndex{1}\).