14.4: Inferir de la correlación a la causalidad
- Page ID
- 102142
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Desafortunadamente, se presentan problemas adicionales con el proceso de justificación de reclamos causales. Si sabemos que A causa B, podemos predecir con confianza que A se correlaciona con B porque la causalidad implica lógicamente correlación. Pero no podemos tener tanta confianza en lo contrario: la correlación no suele proporcionar pruebas sólidas de causalidad. Considera la correlación entre tener secreción nasal y tener ojos llorosos. Sabemos que ninguna causa la otra. En cambio, tener un resfriado causa ambas. Entonces, en este caso decimos que la asociación entre la secreción nasal y los ojos llorosos es espuria, porque un tercer factor está en acción provocando la correlación.
En general, cuando eventos de tipo A están asociados (correlacionados) con eventos de tipo B, tres tipos de explicación podrían dar cuenta de la asociación:
- La asociación es accidental, una coincidencia.
- A está causando B, o B está causando A.
- Algo más C está al acecho en el fondo y está provocando que A y B se asocien significativamente. Es decir, la asociación es espuria por el acecho factor C.
Ejercicio\(\PageIndex{1}\)
¿Por qué la frecuencia de relámpagos en Iowa en el verano se correlaciona positivamente con la producción de palomitas de maíz en Iowa en el verano? Sugerencia: Tus explicaciones deberían poder mostrar por qué la asociación es espuria.
- Contestar
-
La verdadera historia causal detrás de la correlación es que las tormentas causan tanto el relámpago como la lluvia que ayuda al crecimiento del maíz.
Dada una correlación observada, ¿cómo se puede averiguar cómo explicarlo? ¿Cómo se puede saber si A se correlaciona accidentalmente con B, o A causa B, o B causa A, o alguna C está causando ambas? Aquí es donde entra en juego la investigación científica. Hay que pensar en todas las explicaciones razonables y luego descartar todo hasta que quede la verdad. Se descarta una explicación cuando se recopilan datos inconsistentes con ella. Todo este proceso de búsqueda de la explicación correcta se llama el método científico para justificar una afirmación causal. Vamos a verlo en acción.
Existe una fuerte correlación positiva entre tener sobrepeso y tener presión arterial alta. La explicación favorecida de esta asociación es que el sobrepeso pone estrés en el corazón y lo hace bombear a mayor presión. Tal explicación es de tipo 2 (de la lista anterior). Una explicación alternativa de la asociación es que la incapacidad de una persona para digerir la sal es la culpable. Esta incapacidad hace que la persona tenga hambre, lo que a su vez provoca comer en exceso. En tanto, la incapacidad de digerir la sal también hace que el corazón bombee más rápido y con ello ayuda a distribuir la poca sal que hay en la sangre. Este bombeo requiere una presión arterial alta. Esta explicación, que es de tipo 3, está diciendo que la asociación es espuria y que un factor al acecho, la incapacidad de digerir la sal, está produciendo la asociación.
Cuando alguien sugiere una posible explicación —es decir, propone una hipótesis— se debe probar si se quiere saber si aceptar la explicación como correcta. La prueba debe mirar alguna predicción que pueda inferirse de la explicación, alguna predicción que de otra manera no se esperaría. Si los hallazgos reales no concuerdan con esa predicción, entonces se refuta la explicación. Por otro lado, si la predicción sale como se esperaba, nos aferramos a la hipótesis.
Sin embargo, no siempre es un asunto fácil llegar a una predicción que pueda ser utilizada para probar la hipótesis. Las buenas pruebas pueden ser difíciles de encontrar. Supongamos, por ejemplo, mi hipótesis es que el gobierno comunista de la USSR (Rusia, Ucrania, etc.) se desintegró a principios de la década de 1990 porque estaba destinado a perder el poder entonces. ¿Cómo probarías eso? No se puede.
El proceso de adivinar una posible explicación y luego tratar de refutarla probando es la dinámica que hace que la ciencia tenga éxito. El camino hacia el conocimiento científico es el camino de conjetura seguido de duras pruebas. No hay otro camino. (Los filósofos de la ciencia dicen que el camino hacia el conocimiento científico es más complicado que esto, y son correctos, pero lo que hemos dicho aquí es lo suficientemente preciso para nuestros propósitos).
Observe las dos fuentes de creatividad en este proceso científico. Primero, se necesita creatividad para pensar en posibles explicaciones que valgan la pena probar. Segundo, se necesita creatividad para encontrar una buena manera de probar una explicación sugerida.
¿Puedes crear una manera de probar mi explicación de por qué los magos pueden sacar conejos de los sombreros? Afirmo que es porque los magos tienen una habilidad especial para aprovechar mentalmente el poder mágico pronunciando las tres palabras “Alla Kazam Shazam”. I
Si piensas en mi explicación, pronto te darás cuenta de que es terrible, y que puedes probarla y refutarla. Comienza tu prueba asegurándote de que los magos y asistentes no tengan acceso a ningún conejo, para luego ver qué tan bien les va con la producción de conejos.
Ejercicio\(\PageIndex{2}\)
Una tercera explicación de la asociación o correlación entre la presión arterial alta y el sobrepeso es que el estrés es el culpable. El estrés conduce a la ansiedad, lo que promueve comer en exceso y el consiguiente aumento de peso. Este peso extra provoca no sólo una temperatura corporal más alta sino también un flujo sanguíneo extra. Ese flujo a su vez requiere que el corazón bombee más rápido y así aumente la presión arterial. Esta explicación es de cuál de los tres tipos siguientes?
- coincidencia
- causa lleva al efecto
- correlación espuria
- Contestar
-
Respuesta (b). La explicación es de tipo 2. La correlación no es espuria; el estrés es la causa de la correlación. Si esta fuera realmente la explicación correcta de la correlación, entonces las pruebas deberían mostrar que las personas que obtienen una puntuación alta en las pruebas psicológicas por estar bajo estrés tienen más probabilidades tanto de tener presión arterial alta como de tener sobrepeso que la persona promedio que no está bajo estrés.