Saltar al contenido principal
LibreTexts Español

10.6: Ejercicios

  • Page ID
    83400
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    10.6.1: Problemas de análisis

    1. Para el circuito de la Figura\(\PageIndex{1}\), determinar\(I_D\) y\(V_{DS}\). \(I_{DSS}\)= 40 mA,\(V_{GS(off)}\) = −4 V,\(V_{DD}\) = 26 V,\(V_{GG}\) = −2 V,\(R_G\) = 220 k\(\Omega\),\(R_D\) = 1.2 k\(\Omega\).

    2. Para el circuito de la Figura\(\PageIndex{1}\), determinar\(I_D\) y\(V_{DS}\). \(I_{DSS}\)= 20 mA,\(V_{GS(off)}\) = −3 V,\(V_{DD}\) = 22 V,\(V_{GG}\) = −1 V,\(R_G\) = 390 k\(\Omega\),\(R_D\) = 1 k\(\Omega\).

    clipboard_ef6d801f12927575ba8a8109d27f31983.png

    Figura\(\PageIndex{1}\)

    3. Para el circuito de la Figura\(\PageIndex{2}\), determinar\(I_D\),\(V_G\) y\(V_D\). \(I_{DSS}\)= 24 mA,\(V_{GS(off)}\) = −6 V,\(V_{DD}\) = 36 V,\(R_G\) = 220 k\(\Omega\),\(R_S\) = 2 k\(\Omega\),\(R_D\) = 1.8 k\(\Omega\).

    4. Para el circuito de la Figura\(\PageIndex{2}\), determinar\(I_D\),\(V_S\) y\(V_{DS}\). \(I_{DSS}\)= 18 mA,\(V_{GS(off)}\) = −3 V,\(V_{DD}\) = 30 V,\(R_G\) = 270 k\(\Omega\),\(R_S\) = 2.7 k\(\Omega\),\(R_D\) = 3.3 k\(\Omega\).

    clipboard_e05449af127e317abfa1302d7d6ed48e1.png

    Figura\(\PageIndex{2}\)

    5. Para Figura\(\PageIndex{3}\), determinar\(I_D\),\(V_G\) y\(V_D\). \(I_{DSS}\)= 16 mA,\(V_{DD}\) = 25 V,\(V_{GS(off)}\) = −3 V,\(V_{SS}\) = −6 V,\(R_G\) = 560 k\(\Omega\),\(R_S\) = 2 k\(\Omega\),\(R_D\) = 3.6 k\(\Omega\).

    6. Para Figura\(\PageIndex{3}\), determinar\(I_D\), y\(V_{DS}\). \(I_{DSS}\)= 16 mA,\(V_{DD}\) = 25 V,\(V_{GS(off)}\) = −3 V,\(V_{SS}\) = −9 V,\(R_G\) = 680 k\(\Omega\),\(R_S\) = 2 k\(\Omega\),\(R_D\) = 2.7 k\(\Omega\).

    clipboard_eba27e355249c377064b296ae27a1fa6d.png

    Figura\(\PageIndex{3}\)

    7. Para Figura\(\PageIndex{4}\), determinar\(I_D\),\(V_G\) y\(V_D\). \(I_{DSS}\)= 16 mA,\(V_{DD}\) = 25 V,\(V_{GS(off)}\) = −3 V,\(V_{EE}\) = −9 V,\(R_G\) = 810 k\(\Omega\),\(R_E\) = 2 k\(\Omega\),\(R_D\) = 2.7 k\(\Omega\).

    8. Para el circuito de la Figura\(\PageIndex{4}\), determinar\(I_D\) y\(V_{DS}\). \(I_{DSS}\)= 40 mA,\(V_{GS(off)}\) = −4 V,\(V_{DD}\) = 30 V,\(V_{EE}\) = −6 V,\(R_G\) = 750 k\(\Omega\),\(R_E\) = 500\(\Omega\),\(R_D\) = 1.8 k\(\Omega\).

    10.6.2: Problemas de diseño

    9. Usando el circuito de la Figura\(\PageIndex{2}\), determine un valor\(R_S\)\(I_D\) para establecer en 4 mA. \(I_{DSS}\)= 10 mA,\(V_{GS(off)}\) = −2 V,\(V_{DD}\) = 20 V,\(R_G\) = 430 k\(\Omega\),\(R_D\) = 1.8 k\(\Omega\).

    10. Usando el circuito de la Figura\(\PageIndex{1}\), determine un valor\(V_{GG}\)\(I_D\) para establecer en 2 mA. \(I_{DSS}\)= 10 mA,\(V_{GS(off)}\) = −4 V,\(V_{DD}\) = 28 V,\(R_G\) = 470 k\(\Omega\),\(R_D\) = 4.7 k\(\Omega\).

    11. Usando el circuito de la Figura\(\PageIndex{4}\), determine un valor\(R_E\)\(I_D\) para establecer en 4 mA. \(I_{DSS}\)= 18 mA,\(V_{GS(off)}\) = −3 V,\(V_{DD}\) = 25 V,\(V_{EE}\) = −12 V,\(R_G\) = 330 k\(\Omega\),\(R_D\) = 2.2 k\(\Omega\).

    clipboard_e6740db16ac5121b652841a9164c5cc5d.png

    Figura\(\PageIndex{4}\)

    12. Usando el circuito de la Figura\(\PageIndex{4}\), se determinan los valores\(R_D\) para\(R_E\) y\(I_D\) para establecer en 5 mA y\(V_D\) en 6 V.\(I_{DSS}\) = 20 mA,\(V_{GS(off)}\) = −4 V,\(V_{DD}\) = 32 V,\(V_{EE}\) = −10 V,\(R_G\) = 390 k\(\Omega\).

    10.6.3: Problemas de desafío

    13. Siguiendo la derivación de la Ecuación 10.4.2, derivar la Ecuación 10.4.4.

    14. Usando el circuito de la Figura\(\PageIndex{3}\), determine los valores para\(R_S\) y\(V_{SS}\)\(I_D\) para establecer en 4 mA. \(I_{DSS}\)= 16 mA,\(V_{GS(off)}\) = −4 V,\(V_{DD}\) = 30 V,\(R_G\) = 680 k\(\Omega\),\(R_D\) = 2 k\(\Omega\).

    10.6.4: Problemas de simulación por computadora

    15. Realizar una simulación de punto de funcionamiento de CC en el circuito del Problema 7 para verificar los resultados. El J111 será suficiente.

    16. Realizar una simulación de punto de funcionamiento de CC en el circuito del Problema 10 para verificar los resultados. El J111 será suficiente.

    10.6.5: Departamento de Utilidad Marginal

    clipboard_ecf5ad0ff55a608a3c648e391b9c3fe20.png

    Figura\(\PageIndex{5}\): Gráfico de superficie de sesgo combinado.

    Las gráficas de la Figura 10.4.13 representan tres cortes de esta superficie.

    Se ve genial, pero...


    This page titled 10.6: Ejercicios is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James M. Fiore via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.