Saltar al contenido principal
LibreTexts Español

1.8: Matrices de Proyección

  • Page ID
    119148
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    La matriz de proyección de dos por dos proyecta un vector sobre un vector especificado en el\(y\) plano\(x\) -. Dejar\(\mathbf{u}\) ser un vector de unidad en\(\mathbb{R}^2\). La proyección de un vector arbitrario\(\mathbf{x} = \langle x_1, x_2\rangle\) sobre el vector\(\mathbf{u} = \langle u_1, u_2\rangle\) se determina a partir de

    \[\text{Proj}_{\mathbf{u}}(\mathbf{x})=(\mathbf{x}\cdot\mathbf{u})\mathbf{u}=(x_1u_1+x_2u_2)\langle u_1,u_2\rangle .\nonumber \]

    En forma de matriz, esto se convierte

    \[\left(\begin{array}{c}p_1\\p_2\end{array}\right)=\left(\begin{array}{cc}u_1^2&u_1u_2 \\ u_1u_2&u_2^2\end{array}\right)\left(\begin{array}{c}x_1\\x_2\end{array}\right).\nonumber \]

    La matriz de proyección\(\text{P}_{\mathbf{u}}\), entonces, se puede definir como

    \[\begin{aligned}\text{P}_{\mathbf{u}}&=\left(\begin{array}{cc}u_1^2&u_1u_2\\u_1u_2&u_2^2\end{array}\right) \\ &=\left(\begin{array}{c}u_1\\u_2\end{array}\right)\left(\begin{array}{cc}u_1&u_2\end{array}\right) \\ &=\text{uu}^{\text{T}},\end{aligned} \nonumber \]

    que es un producto externo. Observe que\(\text{P}_{\mathbf{u}}\) es simétrico.

    Ejemplo\(\PageIndex{1}\)

    \(\text{P}_{\mathbf{u}}^2=\text{P}_{\mathbf{u}}\)Demuéstralo.

    Solución

    Debe ser obvio que dos proyecciones es igual que una. Para probarlo, tenemos

    \[\begin{aligned}\text{P}_{\mathbf{u}}^2&=(\text{uu}^{\text{T}})(\text{uu}^{\text{T}}) \\ &=\text{u}(\text{u}^{\text{T}}\text{u})\text{u}^{\text{T}}&\quad\text{(associative law)} \\ &=\text{uu}^{\text{T}}&\quad (\mathbf{u}\text{ is a unit vector)} \\ &=\text{P}_{\mathbf{u}}.\end{aligned} \nonumber \]


    This page titled 1.8: Matrices de Proyección is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Jeffrey R. Chasnov via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.