Griego
- Page ID
- 110219
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)El Alfabeto Griego
¡lll! ¡lll! lll
& Nombre & & Nombre & & Nombre
A\(\alpha\) & alfa & I\(\iota\) & iota & P\(\rho\) & rho
B & amp\(\beta\); beta & K &\(\kappa\) & kappa\(\Sigma\) y\(\sigma\) y sigma
\(\Gamma\)\(\gamma\) y gamma y\(\Lambda\)\(\lambda\) y lambda y T\(\tau\) y tau
\(\Delta\)\(\delta\) y delta y M\(\mu\) y mu y \(\Upsilon\)&\(\upsilon\) & upsilon
E &\(\epsilon\) & & épsilon & N\(\nu\) & nu &\(\Phi\) &\(\phi\) & & phi
Z\(\zeta\) & & zeta\(\Xi\) &\(\xi\) & & xi & X\(\chi\) & chi
H & eta\(\eta\) & O & omicron\(o\) & & &\(\Psi\) & psi\(\psi\)
\(\Theta\) & & theta\(\theta\) & & & &\(\Pi\)\(\pi\) & pi & &\(\Omega\) &\(\omega\) & omega
Notación matemática
@c! ¡l! l@
Símbolo y significado y ejemplo
\(\Rightarrow\) & si... entonces; implica\(\abs{x} > 1 ~\Rightarrow~ x^2 > 1\)
\(\Leftrightarrow\) & & si y solo si; implicación bidireccional &\(\abs{x} > 1 ~\Leftrightarrow~ x^2 > 1\)
iff & si y solo si; bidireccional implicación &\(\abs{x} > 1\) iff\(x^2 > 1\)
\(\nRightarrow\) & no implica &\(\abs{x} > 1 ~\nRightarrow~ x > 1\)
\(\exists\) & existe &\(\exists\) un número\(c > 0\)
\(\nexists\) y no existe &\(\nexists ~x\) tal que\(x^2 < 0\)
\(\exists !\)& existe un único &\(\exists !~x\) tal que\(2x-1=3\)
\(\forall\) & para cada &\(\forall x \ge 0\),\(\sqrt{x}\) es un número real
\(\equiv\) & es idénticamente igual a &\(f \equiv 0 ~\Rightarrow~ f(x)=0\) para todos\(x\)
\(\propto\)& es proporcional a &\(y ~\propto x^2 ~\Rightarrow~ y=kx^2\) para algunos\(k\)
\(\subseteq\) & es un subconjunto de &\(\lbrace 0,1 \rbrace \subseteq \lbrace 0,1,2 \rbrace\)
\(\in\) & es un elemento de &\(1 \in \lbrace 1,2,3 \rbrace\)
\(\notin\) & no es un elemento de &\(1 \notin \lbrace 2,3 \rbrace\)
\(\cup\)& unión de conjuntos &\(\lbrace 0,1 \rbrace \cup \lbrace 2,3 \rbrace = \lbrace 0,1,2,3 \rbrace\)
\(\cap\) & intersección de conjuntos & &\(\lbrace 0,1 \rbrace \cap \lbrace 1,2 \rbrace = \lbrace 1 \rbrace\)
\(\varnothing\) & conjunto vacío &\(\lbrace 0,1 \rbrace \cap \lbrace 2,3 \rbrace = \varnothing\)
\(\therefore\) & por lo tanto &\(\therefore\)\(n\) debe existir