5.6: Combinaciones de Operaciones con Fracciones
- Page ID
- 116669
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Objetivos de aprendizaje
- obtener una mayor comprensión del orden de las operaciones
El orden de las operaciones
Para determinar el valor de una cantidad como
\(\dfrac{1}{2} + \dfrac{5}{8} \cdot \dfrac{2}{15}\)
donde tenemos una combinación de operaciones (ocurre más de una operación), debemos usar el orden de operaciones aceptado.
El orden de las operaciones:
- En el orden (2), (3), (4) descrito a continuación, realizar todas las operaciones dentro de los símbolos de agrupación: (), [], (), -. Trabaja desde el conjunto más interno hasta el conjunto más exterior.
- Realizar operaciones exponenciales y raíz.
- Realiza todas las multiplicaciones y divisiones moviéndose de izquierda a derecha.
- Realizar todas las sumas y restaciones moviéndose de izquierda a derecha.
Conjunto de Muestras A
Determinar el valor de cada una de las siguientes cantidades.
\(\dfrac{1}{4} + \dfrac{5}{8} \cdot \dfrac{2}{15}\)
Solución
a. Multiplicar primero.
\(\dfrac{1}{4} + \dfrac{\begin{array} {c} {^1} \\ {\cancel{5}} \end{array}}{\begin{array} {c} {\cancel{8}} \\ {^4} \end{array}} \cdot \dfrac{\begin{array} {c} {^1} \\ {\cancel{2}} \end{array}}{\begin{array} {c} {\cancel{15}} \\ {^3} \end{array}} = \dfrac{1}{4} + \dfrac{1 \cdot 1}{4 \cdot 3} = \dfrac{1}{4} + \dfrac{1}{12}\)
b. Ahora realiza esta adición. Encuentra la pantalla LCD.
\(\left \{ \begin{array} {c} {4 = 2^2} \\ {12 = 2^2 \cdot 3} \end{array} \right \} \text{ The LCD = } 2^2 \cdot 3 = 12\)
\(\begin{array} {rcl} {\dfrac{1}{4} + \dfrac{1}{12}} & = & {\dfrac{1 \cdot 3}{12} + \dfrac{1}{12} = \dfrac{3}{12} + \dfrac{1}{12}} \\ {} & = & {\dfrac{3 + 1}{12} = \dfrac{4}{12} = \dfrac{1}{3}} \end{array}\)
Así,\(\dfrac{1}{4} + \dfrac{5}{8} \cdot \dfrac{2}{15} = \dfrac{1}{3}\)
Conjunto de Muestras A
\(\dfrac{3}{5} + \dfrac{9}{44} (\dfrac{5}{9} - \dfrac{1}{4})\)
Solución
a. Operar entre paréntesis primero,\((\dfrac{5}{9} - \dfrac{1}{4})\)
\(\left \{ \begin{array} {c} {9 = 3^2} \\ {4 = 2^2} \end{array} \right \} \text{ The LCD = } 2^2 \cdot 3^2 = 4 \cdot 9 = 36.\)
\(\dfrac{5 \cdot 4}{36} - \dfrac{1 \cdot 9}{36} = \dfrac{20}{36} - \dfrac{9}{36} = \dfrac{20 - 9}{36} = \dfrac{11}{36}\)
Ahora tenemos
\(\dfrac{3}{5} + \dfrac{9}{44} (\dfrac{11}{36})\)
b. Realizar la multiplicación.
\(\dfrac{3}{5} + \dfrac{\begin{array} {c} {^1} \\ {\cancel{9}} \end{array}}{\begin{array} {c} {\cancel{44}} \\ {^4} \end{array}} \cdot \dfrac{\begin{array} {c} {^1} \\ {\cancel{11}} \end{array}}{\begin{array} {c} {\cancel{36}} \\ {^4} \end{array}} = \dfrac{3}{5} + \dfrac{1 \cdot 1}{4 \cdot 4} = \dfrac{3}{5} + \dfrac{1}{16}\)
c. Ahora realiza la adición. El LCD = 80.
\(\dfrac{3}{5} + \dfrac{1}{16} = \dfrac{3 \cdot 16}{80} + \dfrac{1 \cdot 5}{80} = \dfrac{48}{80} + \dfrac{5}{80} = \dfrac{48 + 5}{80} = \dfrac{53}{80}\)
Así,\(\dfrac{3}{5} + \dfrac{9}{44} (\dfrac{5}{9} - \dfrac{1}{4}) = \dfrac{53}{80}\)
Conjunto de Muestras A
\(8 - \dfrac{15}{426} (2 - 1 \dfrac{4}{15}) (3 \dfrac{1}{5} + 2 \dfrac{1}{8})\)
Solución
a. Trabajar dentro de cada conjunto de paréntesis individualmente.
\(\begin{array} {rcl} {2 - 1 \dfrac{4}{15}} & = & {2 \dfrac{1 \cdot 15 + 4}{15} = 2 - \dfrac{19}{15}} \\ {} & = & {\dfrac{30}{15} - \dfrac{19}{15} = \dfrac{30- 19}{15} = \dfrac{11}{15}} \\ {3 \dfrac{1}{5} + 2 \dfrac{1}{8}} & = & {\dfrac{3 \cdot 5 + 1}{5} + \dfrac{2 \cdot 8 + 1}{8}} \\ {} & = & {\dfrac{16}{5} + \dfrac{17}{8} \text{LCD = 40}} \\ {} & = & {\dfrac{16 \cdot 8}{40} + \dfrac{17 \cdot 5}{40}} \\ {} & = & {\dfrac{128}{40} + \dfrac{85}{40}} \\ {} & = & {\dfrac{128 + 85}{40}} \\ {} & = & {\dfrac{213}{40}} \end{array}\)
Ahora tenemos
\(8 - \dfrac{15}{426} (\dfrac{11}{15}) (\dfrac{213}{40})\)
b. Ahora multiplicar.
\(8 - \dfrac{\begin{array} {c} {^1} \\ {\cancel{15}} \end{array}}{\begin{array} {c} {\cancel{426}} \\ {^2} \end{array}} \cdot \dfrac{11}{\begin{array} {c} {\cancel{15}} \\ {^1} \end{array}} \cdot \dfrac{\begin{array} {c} {^1} \\ {\cancel{213}} \end{array}}{40} = 8 - \dfrac{1 \cdot 11 \cdot 1}{2 \cdot 1 \cdot 40} = 8 - \dfrac{11}{80}\)
c. Ahora resta.
\(8 - \dfrac{11}{80} = \dfrac{80 \cdot 8}{80} - \dfrac{11}{80} = \dfrac{640}{80} - \dfrac{11}{80} = \dfrac{640 - 11}{80} = \dfrac{629}{80} \text{ or } 7 \dfrac{69}{80}\)
Así,\(8 - \dfrac{15}{426} (2 - 1 \dfrac{4}{15}) (3 \dfrac{1}{5} + 2 \dfrac{1}{8}) = 7 \dfrac{69}{80}\)
Conjunto de Muestras A
\((\dfrac{3}{4})^2 \cdot \dfrac{8}{9} - \dfrac{5}{12}\)
Solución
a. Cuadrado\(\dfrac{3}{4}\).
\((\dfrac{3}{4})^2 = \dfrac{3}{4} \cdot \dfrac{3}{4} = \dfrac{3 \cdot 3}{4 \cdot 4} = \dfrac{9}{16}\)
Ahora tenemos
\(\dfrac{9}{16} \cdot \dfrac{8}{9} - \dfrac{5}{12}\)
b. Realizar la multiplicación.
\(\dfrac{\begin{array} {c} {^1} \\ {\cancel{9}} \end{array}}{\begin{array} {c} {\cancel{16}} \\ {^2} \end{array}} \cdot \dfrac{\begin{array} {c} {^1} \\ {\cancel{8}} \end{array}}{\begin{array} {c} {\cancel{9}} \\ {^1} \end{array}} - \dfrac{5}{12} = \dfrac{1 \cdot 1}{2 \cdot 1} - \dfrac{5}{12} = \dfrac{1}{2} - \dfrac{5}{12}\)
c. Ahora realice la resta.
\(\dfrac{1}{2} - \dfrac{5}{12} = \dfrac{6}{12} - \dfrac{5}{12} = \dfrac{6 - 5}{12} = \dfrac{1}{12}\)
Así,\((\dfrac{4}{3})^2 \cdot \dfrac{8}{9} - \dfrac{5}{12} = \dfrac{1}{12}\)
Conjunto de Muestras A
\(2 \dfrac{7}{8} + \sqrt{\dfrac{25}{36}} \div (2 \dfrac{1}{2} - 1 \dfrac{1}{3})\)
Solución
a. Comience operando dentro de los paréntesis.
\(\begin{array} {rcl} {2 \dfrac{1}{2} - 1 \dfrac{1}{3}} & = & {\dfrac{2 \cdot 2 + 1}{2} - \dfrac{1 \cdot 3 + 1}{3} = \dfrac{5}{2} - \dfrac{4}{3}} \\ {} & = & {\dfrac{15}{6} - \dfrac{8}{6} = \dfrac{15 - 8}{6} = \dfrac{7}{6}} \end{array}\)
b. Ahora simplifique la raíz cuadrada.
\(\sqrt{\dfrac{25}{36}} = \dfrac{5}{6} (\text{since} (\dfrac{5}{6})^2 = \dfrac{25}{36})\)
Ahora tenemos
\(2 \dfrac{7}{8} + \dfrac{5}{6} \div \dfrac{7}{6}\)
c. Realizar la división.
\(2 \dfrac{7}{8} + \dfrac{5}{\begin{array} {c} {\cancel{6}} \\ {^1} \end{array}} \cdot \dfrac{\begin{array} {c} {^1} \\ {\cancel{6}} \end{array}}{7} = 2 \dfrac{7}{8} + \dfrac{5 \cdot 1}{1 \cdot 7} = 2 \dfrac{7}{8} + \dfrac{5}{7}\)
d. Ahora realiza la adición.
\(\begin{array} {rcl} {2 \dfrac{7}{8} + \dfrac{5}{7}} & = & {\dfrac{2 \cdot 8 + 7}{8} + \dfrac{5}{7} = \dfrac{23}{8} + \dfrac{5}{7} \text{ LCD = }56.} \\ {} & = & {\dfrac{23 \cdot 7}{56} + \dfrac{5 \cdot 8}{56} = \dfrac{161}{56} + \dfrac{40}{56}} \\ {} & = & {\dfrac{161 + 40}{56} = \dfrac{201}{56} \text{ or } 3 \dfrac{33}{56}} \end{array}\)
Así,\(2 \dfrac{7}{8} + \sqrt{\dfrac{25}{36}} \div (2 \dfrac{1}{2} - 1 \dfrac{1}{3}) = 3 \dfrac{33}{56}\)
Conjunto de práctica A
Encuentra el valor de cada una de las siguientes cantidades.
\(\dfrac{5}{16} \cdot \dfrac{1}{10} - \dfrac{1}{32}\)
- Responder
-
0
Conjunto de práctica A
\(\dfrac{6}{7} \cdot \dfrac{21}{40} \div \dfrac{9}{10} + 5 \dfrac{1}{3}\)
- Responder
-
\(\dfrac{35}{6}\)o\(5 \dfrac{5}{6}\)
Conjunto de práctica A
\(8\dfrac{7}{10} - 2(4 \dfrac{1}{2} - 3 \dfrac{2}{3})\)
- Responder
-
\(\dfrac{211}{30}\)o\(7 \dfrac{1}{30}\)
Conjunto de práctica A
\(\dfrac{17}{18} - \dfrac{58}{30} (\dfrac{1}{4} - \dfrac{3}{32}) (1 - \dfrac{13}{29})\)
- Responder
-
\(\dfrac{7}{9}\)
Conjunto de práctica A
\((\dfrac{1}{10} + 1 \dfrac{1}{2}) \div (1 \dfrac{4}{5} - 1 \dfrac{6}{25})\)
- Responder
-
\(2 \dfrac{6}{7}\)
Conjunto de práctica A
\(\dfrac{\dfrac{2}{3} - \dfrac{3}{8} \cdot \dfrac{4}{9}}{\dfrac{7}{16} \cdot 1 \dfrac{1}{3} + 1 \dfrac{1}{4}}\)
- Responder
-
\(\dfrac{3}{11}\)
Conjunto de práctica A
\((\dfrac{3}{8})^2 + \dfrac{3}{4} \cdot \dfrac{1}{8}\)
- Responder
-
\(\dfrac{15}{64}\)
Conjunto de práctica A
\(\dfrac{2}{3} \cdot 2 \dfrac{1}{4} - \sqrt{\dfrac{4}{25}}\)
- Responder
-
\(\dfrac{11}{10}\)
Ejercicios
Encuentra cada valor.
Ejercicio\(\PageIndex{1}\)
\(\dfrac{4}{3} - \dfrac{1}{6} \cdot \dfrac{1}{2}\)
- Responder
-
\(\dfrac{5}{4}\)
Ejercicio\(\PageIndex{2}\)
\(\dfrac{7}{9} - \dfrac{4}{5} \cdot \dfrac{5}{36}\)
Ejercicio\(\PageIndex{3}\)
\(2 \dfrac{2}{7} + \dfrac{5}{8} \div \dfrac{5}{16}\)
- Responder
-
\(4 \dfrac{2}{7}\)
Ejercicio\(\PageIndex{4}\)
\(\dfrac{3}{16} \div \dfrac{9}{14} \cdot \dfrac{12}{21} + \dfrac{5}{6}\)
Ejercicio\(\PageIndex{5}\)
\(\dfrac{4}{25} \div \dfrac{8}{15} - \dfrac{7}{20} \div 2 \dfrac{1}{10}\)
- Responder
-
\(\dfrac{2}{15}\)
Ejercicio\(\PageIndex{6}\)
\(\dfrac{2}{5} \cdot (\dfrac{1}{19} + \dfrac{3}{38})\)
Ejercicio\(\PageIndex{7}\)
\(\dfrac{3}{7} \cdot (\dfrac{3}{10} - \dfrac{1}{15})\)
- Responder
-
\(\dfrac{1}{10}\)
Ejercicio\(\PageIndex{8}\)
\(\dfrac{10}{11} \cdot (\dfrac{8}{9} - \dfrac{2}{5}) + \dfrac{3}{25} \cdot (\dfrac{5}{3} + \dfrac{1}{4})\)
Ejercicio\(\PageIndex{9}\)
\(\dfrac{2}{7} \cdot (\dfrac{6}{7} - \dfrac{3}{28}) + 5 \dfrac{1}{3} \cdot (1 \dfrac{1}{4} - \dfrac{1}{8})\)
- Responder
-
\(6 \dfrac{3}{14}\)
Ejercicio\(\PageIndex{10}\)
\(\dfrac{(\dfrac{6}{11} - \dfrac{1}{3}) \cdot (\dfrac{1}{21} + 2 \dfrac{13}{42})}{1 \dfrac{1}{5} + \dfrac{7}{40}}\)
Ejercicio\(\PageIndex{11}\)
\((\dfrac{1}{2})^2 + \dfrac{1}{8}\)
- Responder
-
\(\dfrac{3}{8}\)
Ejercicio\(\PageIndex{12}\)
\((\dfrac{3}{5})^2 - \dfrac{3}{10}\)
Ejercicio\(\PageIndex{13}\)
\(\sqrt{\dfrac{36}{81}} + \dfrac{1}{3} \cdot \dfrac{2}{9}\)
- Responder
-
\(\dfrac{20}{27}\)
Ejercicio\(\PageIndex{14}\)
\(\sqrt{\dfrac{49}{64}} - \sqrt{\dfrac{9}{4}}\)
Ejercicio\(\PageIndex{15}\)
\(\dfrac{2}{3} \cdot \sqrt{\dfrac{9}{4}} - \dfrac{15}{4} \cdot \sqrt{\dfrac{16}{225}}\)
- Responder
-
0
Ejercicio\(\PageIndex{16}\)
\((\dfrac{3}{4})^2 + \sqrt{dfrac{25}{16}}\)
Ejercicio\(\PageIndex{17}\)
\((\dfrac{1}{3})^2 \cdot \sqrt{\dfrac{81}{25}} + \dfrac{1}{40} \div \dfrac{1}{8}\)
- Responder
-
\(\dfrac{2}{5}\)
Ejercicio\(\PageIndex{18}\)
\((\sqrt{\dfrac{4}{49}})^2 + \dfrac{3}{7} \div 1 \dfrac{3}{4}\)
Ejercicio\(\PageIndex{19}\)
\((\sqrt{\dfrac{100}{121}})^2 + \dfrac{21}{(11)^2}\)
- Responder
-
1
Ejercicio\(\PageIndex{20}\)
\(\sqrt{\dfrac{3}{8} + \dfrac{1}{64}} - \dfrac{1}{2} \div 1 \dfrac{1}{3}\)
Ejercicio\(\PageIndex{21}\)
\(\sqrt{\dfrac{1}{4}} \cdot (\dfrac{5}{6})^2 + \dfrac{9}{14} \cdot 2 \dfrac{1}{3} - \sqrt{\dfrac{1}{81}}\)
- Responder
-
\(\dfrac{215}{72}\)
Ejercicio\(\PageIndex{22}\)
\(\sqrt{\dfrac{1}{9}} \cdot \sqrt{\dfrac{6 \dfrac{3}{8} + 2 \dfrac{5}{8}}{16}} + 7 \dfrac{7}{10}\)
Ejercicio\(\PageIndex{23}\)
\(\dfrac{3 \dfrac{3}{4} + \dfrac{4}{5} \cdot (\dfrac{1}{2})^3}{\dfrac{67}{240} + (\dfrac{1}{3})^4 \cdot (\dfrac{9}{10})}\)
- Responder
-
\(\dfrac{252}{19}\)
Ejercicio\(\PageIndex{24}\)
\(\sqrt{\sqrt{\dfrac{16}{81}}} + \dfrac{1}{4} \cdot 6\)
Ejercicio\(\PageIndex{25}\)
\(\sqrt{\sqrt{\dfrac{81}{256}}} - \dfrac{3}{32} \cdot 1 \dfrac{1}{8}\)
- Responder
-
\(\dfrac{165}{256}\)
Ejercicios para revisión
Ejercicio\(\PageIndex{26}\)
Verdadero o falso: Nuestro sistema numérico, el sistema numérico hindu-árabe, es un sistema numérico posicional con base diez.
Ejercicio\(\PageIndex{27}\)
El hecho de que 1 veces cualquier número entero = ese número entero en particular ilustra qué propiedad de multiplicar?
- Responder
-
identidad multiplicativa
Ejercicio\(\PageIndex{28}\)
Convertir\(8 \dfrac{6}{7}\) a una fracción impropia.
Ejercicio\(\PageIndex{29}\)
Encuentra la suma. \(\dfrac{3}{8} + \dfrac{4}{5} + \dfrac{5}{6}\).
- Responder
-
\(\dfrac{241}{120}\)o\(2 \dfrac{1}{120}\)
Ejercicio\(\PageIndex{30}\)
Simplificar\(\dfrac{6 + \dfrac{1}{8}}{6 - \dfrac{1}{8}}\).