Saltar al contenido principal
LibreTexts Español

1.2: Índices Miller (hkl)

  • Page ID
    69249
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    La orientación de una superficie o un plano cristalino puede definirse considerando cómo el plano (o de hecho cualquier plano paralelo) intersecta los ejes cristalográficos principales del sólido. La aplicación de un conjunto de reglas conduce a la asignación de los índices Miller (hkl), que son un conjunto de números que cuantifican las intercepciones y así pueden ser utilizados para identificar de manera única el plano o superficie.

    El siguiente tratamiento del procedimiento utilizado para asignar los índices Miller es uno simplificado (puede ser mejor si simplemente lo considera como una “receta”) y solo se considerará un sistema de cristal cúbico (uno que tenga una celda unitaria cúbica con dimensiones a x a x a) .

    El procedimiento se ilustra más fácilmente usando un ejemplo por lo que primero consideraremos la siguiente superficie/plano:

    Paso 1: Identificar las intercepciones en los ejes x, y y z.

    En este caso la intercepción en el eje x está en x = a (en el punto (a ,0,0)), pero la superficie es paralela a los ejes y - y z - estrictamente por lo tanto no hay intercepción en estos dos ejes pero consideraremos que la intercepción está en infinito ( ) para el caso especial donde el plano es paralelo a un eje. Las intercepciones en los ejes x -, y - y z son así

    Intercepciones: a, ,

    Paso 2: Especificar las intercepciones en coordenadas fraccionarias

    Las coordenadas se convierten en coordenadas fraccionarias dividiendo por la dimensión celular respectiva; por ejemplo, un punto (x, y, z) en una celda unitaria de dimensiones a x b x c tiene coordenadas fraccionarias de (x/a , y/b, z/c). En el caso de una celda unitaria cúbica, cada coordenada simplemente se dividirá por la constante de celda cúbica, a. Esto da

    Intercepciones fraccionarias: a/a, /a, /a es decir , 1, ,

    Paso 3: Toma los recíprocos de las intercepciones fraccionarias

    Esta manipulación final genera los índices Miller que (por convención) deberían especificarse entonces sin estar separados por comas u otros símbolos. Los índices Miller también están encerrados entre corchetes estándar (...) cuando se está especificando una superficie única como la que se considera aquí.

    Los recíprocos de 1 y son 1 y 0 respectivamente, cediendo así

    Índices Miller: (100)

    Entonces la superficie/plano ilustrado es el plano (100) del cristal cúbico.

    Otros Ejemplos

    1. La superficie (110)

    Asignación

    Intercepciones: a, a,

    Intercepciones fraccionarias: 1, 1,

    Índices Miller: (110)

    2. La superficie (111)

    Asignación

    Intercepciones: a, a, a

    Intercepciones fraccionarias: 1, 1, 1

    Índices Miller: (111)

    Las superficies (100), (110) y (111) consideradas anteriormente son las llamadas superficies de índice bajo de un sistema de cristal cúbico (la “baja” se refiere a que los índices Miller son números pequeños - 0 o 1 en este caso). Estas superficies tienen una importancia particular pero hay un número infinito de otros planos que pueden definirse usando la notación de índice Miller. Basta con mirar a una más...

    3. La superficie (210)

    Asignación

    Intercepciones: ½ a, a,

    Intercepciones fraccionarias: ½, 1,

    Índices Miller: (210)

    Notas adicionales:

    1. en algunos casos los índices Miller se multiplican o dividen mejor por un número común para simplificarlos, por ejemplo, eliminando un factor común. Esta operación de multiplicación simplemente genera un plano paralelo que se encuentra a una distancia diferente del origen de la celda unitaria particular que se está considerando. e.g. (200) se transforma a (100) dividiendo por 2.
    2. si alguna de las intercepciones está en valores negativos en los ejes, entonces el signo negativo se trasladará a los índices Miller; en tales casos el signo negativo se denota realmente sobregolpeando el número relevante. e.g. (00 -1) se denota por
    3. en el sistema de cristal hcp hay cuatro ejes principales; esto lleva a cuatro índices Miller, por ejemplo, puede ver artículos que hacen referencia a una superficie hcp (0001). Cabe señalar, sin embargo, que las intercepciones en los tres primeros ejes están necesariamente relacionadas y no completamente independientes; en consecuencia, los valores de los tres primeros índices de Miller también están vinculados por una simple relación matemática.

    ¿Qué son las superficies equivalentes a simetría?

    En el siguiente diagrama las tres superficies resaltadas están relacionadas por los elementos de simetría del cristal cúbico, son totalmente equivalentes.

    De hecho hay un total de 6 caras relacionadas por los elementos de simetría y equivalentes a la (100) superficie - cualquier superficie perteneciente a este conjunto de superficies relacionadas con la simetría puede ser denotada por la notación más general {100} donde los índices de Miller de una de las superficies están encerrados en corchetes rizados.

    Nota importante final: en el sistema cúbico el plano (hkl) y el vector [hkl], definidos de manera normal con respecto al origen, son normales entre sí pero esta característica es única para el sistema de cristales cúbicos y no aplica a sistemas cristalinos de menor simetría.


    This page titled 1.2: Índices Miller (hkl) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Roger Nix.