Saltar al contenido principal
LibreTexts Español

1.17.5: Coeficiente de Presión Térmica Isocórica

  • Page ID
    79836
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    El volumen de equilibrio de un sistema cerrado dado se define por el siguiente conjunto de variables independientes donde\(\xi\) se encuentra la variable de composición general.

    \[\mathrm{V}=\mathrm{V}\left[\mathrm{T}, \mathrm{p}, \xi^{\mathrm{eq}} ; \mathrm{A}=0\right]\]

    Hemos sobredefinido el sistema más bien. El objetivo es identificar la variable de composición en equilibrio y bajo la condición de que la afinidad por el cambio espontáneo sea cero. El sistema se ve perturbado por un cambio de temperatura pero requerimos que el sistema recorra un camino donde el volumen permanezca constante (y en equilibrio). Se debe cambiar la presión para que se satisfagan estas condiciones. Por definición, la dependencia diferencial isocórica de la presión sobre la temperatura define el coeficiente isocórico de presión térmica.

    \[\beta_{V}=\left(\frac{\partial p}{\partial T}\right)_{v}\]

    Siguen tres ecuaciones interesantes [1-3].

    \[\beta_{\mathrm{V}}=\alpha_{\mathrm{p}} / \kappa_{\mathrm{T}}\]

    \[\beta_{\mathrm{V}}=-\mathrm{C}_{\mathrm{V}} / \mathrm{T} \, \mathrm{V} \, \alpha_{\mathrm{s}}\]

    \[\alpha_{\mathrm{p}} / \kappa_{\mathrm{T}}=-\mathrm{C}_{\mathrm{V}} / \mathrm{T} \, \mathrm{V} \, \alpha_{\mathrm{s}}\]

    Notas al pie

    [1] De la ecuación (a)

    \[\beta_{\mathrm{V}}=-\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{p}} \,\left(\frac{\partial \mathrm{p}}{\partial \mathrm{V}}\right)_{\mathrm{T}}\]

    O,

    \[\beta_{\mathrm{v}}=\mathrm{E}_{\mathrm{p}} / \mathrm{K}_{\mathrm{T}}=\alpha_{\mathrm{p}} / \kappa_{\mathrm{T}}\]

    [2] Usando una relación Maxwell

    \[\beta_{V}=\left(\frac{\partial S}{\partial V}\right)_{T}=-\left(\frac{\partial S}{\partial T}\right)_{V} \,\left(\frac{\partial T}{\partial V}\right)_{S}\]

    Pero\(\left(\frac{\partial \mathrm{S}}{\partial \mathrm{T}}\right)_{\mathrm{V}}=\mathrm{C}_{\mathrm{V}} / \mathrm{T}\) Entonces

    \[\beta_{\mathrm{v}}=-\mathrm{C}_{\mathrm{v}} / \mathrm{T} \, \mathrm{E}_{\mathrm{s}}=-\mathrm{C}_{\mathrm{v}} / \mathrm{T} \, \mathrm{V} \, \alpha_{\mathrm{s}}\]

    [3] De [1] y [2],

    \[\mathrm{E}_{\mathrm{p}} / \mathrm{K}_{\mathrm{T}}=-\mathrm{C}_{\mathrm{V}} / \mathrm{T} \, \mathrm{E}_{\mathrm{S}}\]

    O,

    \[\alpha_{\mathrm{p}} / \kappa_{\mathrm{T}}=-\mathrm{C}_{\mathrm{V}} / \mathrm{T} \, \mathrm{V} \, \alpha_{\mathrm{S}}\]


    This page titled 1.17.5: Coeficiente de Presión Térmica Isocórica is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.