Saltar al contenido principal
LibreTexts Español

20.3: Transformaciones nucleares

  • Page ID
    72692
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Objetivos de aprendizaje
    • Describir la síntesis de nucleidos transuránicos

    Después del descubrimiento de la radiactividad, el campo de la química nuclear fue creado y desarrollado rápidamente a principios del siglo XX. Una serie de nuevos descubrimientos en las décadas de 1930 y 1940, junto con la Segunda Guerra Mundial, combinados para dar comienzo a la Era Nuclear a mediados del siglo XX. La ciencia aprendió a crear nuevas sustancias, y se encontró que ciertos isótopos de ciertos elementos poseen la capacidad de producir cantidades de energía sin precedentes, con el potencial de causar tremendos daños durante la guerra, así como producir enormes cantidades de poder para las necesidades de la sociedad durante la paz.

    Síntesis de Nuclidos

    La transmutación nuclear es la conversión de un nucleido en otro. Puede ocurrir por la desintegración radiactiva de un núcleo, o la reacción de un núcleo con otra partícula. El primer núcleo artificial se produjo en el laboratorio de Ernest Rutherford en 1919 mediante una reacción de transmutación, el bombardeo de un tipo de núcleos con otros núcleos o con neutrones. Rutherford bombardeó átomos de nitrógeno con partículas α de alta velocidad de un isótopo radiactivo natural de radio y observó protones resultantes de la reacción:

    \[\ce{^{14}_7N + ^4_2He ⟶ ^{17}_8O + ^1_1H} \nonumber\]

    Los\(\ce{^1_1H}\) núcleos\(\ce{^{17}_8O}\) y que se producen son estables, por lo que no se producen más cambios (nucleares).

    Para alcanzar las energías cinéticas necesarias para producir reacciones de transmutación, se utilizan dispositivos llamados aceleradores de partículas. Estos dispositivos utilizan campos magnéticos y eléctricos para aumentar las velocidades de las partículas nucleares. En todos los aceleradores, las partículas se mueven al vacío para evitar colisiones con moléculas de gas. Cuando se requieren neutrones para las reacciones de transmutación, generalmente se obtienen de reacciones de desintegración radiactiva o de diversas reacciones nucleares que ocurren en reactores nucleares.

    Acelerador de partículas CERN

    Ubicado cerca de Ginebra, el Laboratorio CERN (“Conseil Européen pour la Recherche Nucléaire” o Consejo Europeo de Investigación Nuclear) es el principal centro mundial para las investigaciones de las partículas fundamentales que componen la materia. Contiene el Gran Colisionador de Hadrones (LHC) circular de 27 kilómetros (17 millas) de largo, el acelerador de partículas más grande del mundo (Figura\(\PageIndex{1}\)). En el LHC, las partículas son impulsadas a altas energías y luego se hacen colisionar entre sí o con objetivos estacionarios a casi la velocidad de la luz. Los electroimanes superconductores se utilizan para producir un campo magnético fuerte que guía las partículas alrededor del anillo. Detectores especializados diseñados específicamente observan y registran los resultados de estas colisiones, que luego son analizadas por científicos del CERN utilizando computadoras poderosas.

    Figura


    20.3: Transformaciones nucleares is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.