Loading [MathJax]/extensions/mml2jax.js
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

Buscar

  • Filtrar resultados
  • Ubicación
  • Clasificación
    • Tipo de artículo
    • Author
    • Show TOC
    • Cover Page
    • License
    • Transcluded
      • Autonumber Section Headings
      • License Version
    • Incluir datos adjuntos
    Buscando en
    Acerca de 4 resultados
    • https://espanol.libretexts.org/Matematicas/Analisis/Introducci%C3%B3n_al_An%C3%A1lisis_Matem%C3%A1tico_I_(Lafferriere%2C_Lafferriere_y_Nguyen)/02%3A_Secuencias/2.04%3A_El_teorema_de_Bolazno-Weierstrass
      El Teorema de Bolzano-Weierstrass está en la base de muchos resultados en el análisis. es, de hecho, equivalente al axioma de integridad de los números reales.
    • https://espanol.libretexts.org/Matematicas/Analisis/Introducci%C3%B3n_al_An%C3%A1lisis_Real_(Lebl)/03%3A_Secuencias_y_series/3.04%3A_Secuencias_de_Cauchy
    • https://espanol.libretexts.org/Matematicas/Analisis/Libro%3A_An%C3%A1lisis_matem%C3%A1tico_(Zakon)/03%3A_Espacios_vectoriales_y_espacios_m%C3%A9tricos/3.13%3A_Secuencias_Cauchy._Completitud
      Una secuencia convergente se caracteriza por el hecho de que sus términos xse vuelven (y permanecen) arbitrariamente cerca de su límite, como m→+∞. Debido a esto, sin embargo, también se acercan entre...Una secuencia convergente se caracteriza por el hecho de que sus términos xse vuelven (y permanecen) arbitrariamente cerca de su límite, como m→+∞. Debido a esto, sin embargo, también se acercan entre sí; de hecho, ρ (x, x) puede hacerse arbitrariamente pequeña para m y n suficientemente grandes. Es natural preguntarse si esta última propiedad, a su vez, implica la existencia de un límite. Este problema fue estudiado por primera vez por Augustin-Louis Cauchy (1789-1857). Así llamaremos secuencia
    • https://espanol.libretexts.org/Matematicas/Analisis/Libro%3A_An%C3%A1lisis_Real_(Boman_y_Rogers)/08%3A_Volver_a_la_serie_Power/8.02%3A_Convergencia_Uniforme-_Integrales_y_Derivados
      Vimos en la sección anterior que si f (n) es una secuencia de funciones continuas que converge uniformemente a f en un intervalo, entonces f debe ser continua en el intervalo también. Esto no era nece...Vimos en la sección anterior que si f (n) es una secuencia de funciones continuas que converge uniformemente a f en un intervalo, entonces f debe ser continua en el intervalo también. Esto no era necesariamente cierto si la convergencia era solo puntual, ya que vimos una secuencia de funciones continuas definidas en (−∞, ∞) convergiendo puntualmente a una serie de Fourier que no era continua en la línea real. La convergencia uniforme también garantiza algunas otras propiedades agradables.

    Support Center

    How can we help?