Loading [MathJax]/jax/output/SVG/config.js
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

Buscar

  • Filtrar resultados
  • Ubicación
  • Clasificación
    • Tipo de artículo
    • Author
    • Show TOC
    • Cover Page
    • License
    • Transcluded
      • Autonumber Section Headings
      • License Version
    • Incluir datos adjuntos
    Buscando en
    Acerca de 4 resultados
    • https://espanol.libretexts.org/Matematicas/Algebra_lineal/Un_Primer_Curso_de_%C3%81lgebra_Lineal_(Kuttler)/04%3A_R/4.11%3A_Ortogonalidad
      En esta sección, examinamos lo que significa que los vectores (y conjuntos de vectores) sean ortogonales y ortonormales. En primer lugar, es necesario revisar algunos conceptos importantes. Puede reco...En esta sección, examinamos lo que significa que los vectores (y conjuntos de vectores) sean ortogonales y ortonormales. En primer lugar, es necesario revisar algunos conceptos importantes. Puede recordar las definiciones para el lapso de un conjunto de vectores y un conjunto lineal independiente de vectores.
    • https://espanol.libretexts.org/Matematicas/Combinatoria_y_Matematicas_Discretas/Combinatoria_y_Teor%C3%ADa_Gr%C3%A1fica_(Guichard)/01%3A_Fundamentos/1.09%3A_N%C3%BAmeros_de_Stirling
      Comenzamos aplicando las relaciones de recurrencia:\[\eqalign{ \sum_{j=1}^n &(-1)^{n-j}\left[\begin{array}{c}n\\j\end{array}\right] \left\{\begin{array}{c}j\\k\end{array}\right\}= \sum_{j=1}^n (-1)^{n...Comenzamos aplicando las relaciones de recurrencia:\[\eqalign{ \sum_{j=1}^n &(-1)^{n-j}\left[\begin{array}{c}n\\j\end{array}\right] \left\{\begin{array}{c}j\\k\end{array}\right\}= \sum_{j=1}^n (-1)^{n-j}\left(\left[\begin{array}{c}n-1 \\ j-1\end{array}\right]+(n-1)\left[\begin{array}{c}n-1 \\ j\end{array}\right]\right) \left\{\begin{array}{c}j\\k\end{array}\right\}\cr &=\sum_{j=1}^n (-1)^{n-j}\left[\begin{array}{c}n-1\\j-1\end{array}\right] \left\{\begin{array}{c}j\\k\end{array}\right\}+ \sum_{…
    • https://espanol.libretexts.org/Matematicas/Algebra_lineal/Un_Primer_Curso_de_%C3%81lgebra_Lineal_(Kuttler)/02%3A_Matrices/2.06%3A_La_identidad_y_las_inversas
      Hay una matriz especial, denotada I, que se llama como la matriz de identidad
    • https://espanol.libretexts.org/Matematicas/Logica_Matematica_y_Pruebas/Suave_Introducci%C3%B3n_al_Arte_de_las_Matem%C3%A1ticas_(Campos)/06%3A_Relaciones_y_Funciones/6.06%3A_Funciones_especiales
      Hay muchas funciones que fallan en la prueba de línea horizontal para la que, sin embargo, parece que tenemos funciones inversas para. Por ejemplo, x^2 falla HLT pero la raíz cuadrada de x es una inve...Hay muchas funciones que fallan en la prueba de línea horizontal para la que, sin embargo, parece que tenemos funciones inversas para. Por ejemplo, x^2 falla HLT pero la raíz cuadrada de x es una inversa bastante razonable para ello; solo hay que tener cuidado con el problema de “más o menos”. Esta aparente contradicción puede resolverse utilizando la noción de restricción.

    Support Center

    How can we help?