1.3E: Ejercicios
- Page ID
- 51718
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)La práctica hace a la perfección
Simplifique expresiones con valor absoluto
En los siguientes ejercicios, rellena \(<,>,\) o \(=\) para cada uno de los siguientes pares de números.
1. ⓐ \(|−7| \text{ ___ }−|−7|\)
ⓑ \(6 \text{ ___ }−|−6|\)
ⓒ \(|−11|\text{ ___ }−11\)
ⓓ \(−(−13)\text{ ___ }−|−13|\)
- Contestar
-
ⓐ \(>\) ⓑ \(>\) ⓒ \(>\) ⓓ \(>\)
2. ⓐ \(−|−9| \text{ ___ } |−9|\)
ⓑ \(−8 \text{ ___ } |−8| \)
ⓒ \(|−1| \text{ ___ } −1 \)
ⓓ \(−(−14) \text{ ___ } −|−14|\)
3. ⓐ \(−|2| \text{ ___ }−|−2|\)
ⓑ \(−12 \text{ ___ }−|−12|\)
ⓒ \(|−3| \text{ ___ }−3\)
ⓓ \(|−19| \text{ ___ }−(−19) \)
- Contestar
-
ⓐ \(=\) ⓑ \(=\) ⓒ \(>\) ⓓ \(=\)
4. ⓐ \(−|−4| \text{ ___ } −|4| \)
ⓑ \(5 \text{ ___ } −|−5| \)
ⓒ \( −|−10| \text{ ___ } −10 \)
ⓓ \(−|−0| \text{ ___ } −(−0) \)
En los siguientes ejercicios, simplifique.
5. \(|15−7|−|14−6|\)
- Contestar
-
0
6. \(|17−8|−|13−4|\)
7. \(18−|2(8−3)|\)
- Contestar
-
8
8. \(15−|3(8−5)|\)
9. \(18−|12−4(4−1)+3|\)
- Contestar
-
15
10. \(27−|19+4(3−1)−7|\)
11. \(10−3|9−3(3−1)|\)
- Contestar
-
1
12. \(13−2|11−2(5−2)|\)
Sumar y restar enteros
En los siguientes ejercicios, simplifique cada expresión.
13. ⓐ \(−7+(−4)\)
ⓑ \(−7+4\)
ⓒ \(7+(−4).\)
- Contestar
-
ⓐ \(−11\) ⓑ \(−3\) ⓒ \(3\)
ⓑ \(−5+9\)
ⓒ \(5+(−9)\)
15. \(48+(−16)\)
- Contestar
-
32
16. \(34+(−19)\)
17. \(−14+(−12)+4\)
- Contestar
-
\(-22\)
18. \(−17+(−18)+6\)
19. \(19+2(−3+8)\)
- Contestar
-
\(29\)
20. \(24+3(−5+9)\)
21. ⓐ \(13−7\)
ⓑ \(−13−(−7)\)
ⓒ \(−13−7\)
ⓓ \(13−(−7)\)
- Contestar
-
ⓐ 6 ⓑ −6 ⓒ −20 ⓓ 20
22. ⓐ \(15−8\)
ⓑ \(−15−(−8)\)
ⓒ \(−15−8\)
ⓓ \(15−(−8)\)
23. \(−17−42\)
- Contestar
-
\(-59\)
24. \(−58−(−67)\)
25. \(−14−(−27)+9\)
- Contestar
-
22
26. \(64+(−17)−9\)
27. ⓐ \(44−28\) ⓑ \(44+(−28)\)
- Contestar
-
ⓐ 16 ⓑ 16
28. ⓐ \(35−16\) ⓑ \(35+(−16)\)
29. ⓐ \(27−(−18)\) ⓑ \(27+18\)
- Contestar
-
ⓐ 45 ⓑ 45
30. ⓐ \(46−(−37)\) ⓑ \(46+37\)
31. \((2−7)−(3−8)\)
- Contestar
-
0
32. \((1−8)−(2−9)\)
33. \(−(6−8)−(2−4)\)
- Contestar
-
4
34. \(−(4−5)−(7−8)\)
35. \(25−[10−(3−12)]\)
- Contestar
-
6
36. \(32−[5−(15−20)]\)
Multiplicar y dividir enteros
En los siguientes ejercicios, multiplica o divide.
37. ⓐ \(−4⋅8\)
ⓑ \(13(−5)\)
ⓒ \(−24÷6\)
ⓓ \(−52÷(−4)\)
- Contestar
-
ⓐ \(−32\) ⓑ \(−65\) ⓒ \(−4\) ⓓ \(13\)
ⓑ \(9(−7)\)
ⓒ \(35÷(−7)\)
ⓓ \(−84÷(−6)\)
ⓑ \(−180÷15\)
ⓒ \(3(−13)\)
ⓓ \(−1(−14)\)
- Contestar
-
ⓐ \(−4\) ⓑ \(−12\) ⓒ \(−39\) ⓓ \(14\)
ⓑ \(−192÷12\)
ⓒ \(9(−7)\)
ⓓ \(−1(−19)\)
Simplifique y evalúe expresiones con números enteros
En los siguientes ejercicios, simplifique cada expresión.
41. ⓐ \((−2)^6\) ⓑ \(−2^6\)
- Contestar
-
ⓐ \(64\) ⓑ \(−64\)
42. ⓐ \((−3)^5\) ⓑ \(−3^5\)
43. \(5(−6)+7(−2)−3\)
- Contestar
-
\(−47\)
44. \(8(−4)+5(−4)−6\)
45. \(−3(−5)(6)\)
- Contestar
-
\(90\)
46. \(−4(−6)(3)\)
47. \((8−11)(9−12)\)
- Contestar
-
\(9\)
48. \((6−11)(8−13)\)
49. \(26−3(2−7)\)
- Contestar
-
\(41\)
50. \(23−2(4−6)\)
51. \(65÷(−5)+(−28)÷(−7)\)
- Contestar
-
\(-9\)
52. \(52÷(−4)+(−32)÷(−8)\)
53. \(9−2[3−8(−2)]\)
- Contestar
-
\(-29\)
54. \(11−3[7−4(−2)]\)
55. \(8−|2−4(4−1)+3|\)
- Contestar
-
\(1\)
56. \(7−|5−3(4−1)−6|\)
57. \(9−3|2(2−6)−(3−7)|\)
- Contestar
-
\(-3\)
58. \(5−2|2(1−4)−(2−5)|\)
59. \((−3)^2−24÷(8−2)\)
- Contestar
-
\(5\)
60. \((−4)^2−32÷(12−4)\)
En los siguientes ejercicios, evalúe cada expresión.
61. \(y+(−14)\) cuando ⓐ \(y=−33\) ⓑ \(y=30\)
- Contestar
-
ⓐ \(−47\) ⓑ \(16\)
62. \(x+(−21)\) cuando ⓐ \(x=−27\) ⓑ \(x=44\)
63. \((x+y)^2\) cuándo \(x=−3\) y \(y=14\)
- Contestar
-
\(121\)
64. \((y+z)^2\) cuándo \(y=−3\) y \(z=15\)
65. \(9a−2b−8\) cuándo \(a=−6\) y \(b=−3\)
- Contestar
-
\(-56\)
66. \(7m−4n−2\) cuándo \(m=−4\) y \(n=−9\)
67. \(3x^2−4xy+2y^2\) cuándo \(x=−2\) y \(y=−3\)
- Contestar
-
\(6\)
68. \(4x^2−xy+3y^2\) cuándo \(x=−3\) y \(y=−2\)
Traducir frases en inglés a expresiones algebraicas
En los siguientes ejercicios, traducir a una expresión algebraica y simplificar si es posible.
69. la suma de 3 y −15, incrementada en 7
- Contestar
-
\((3+(−15))+7;−5\)
70. la suma de \(−8\) y \(−9\), incrementada en \(23\)
ⓑ restar \(11\) de \(−25\)
- Contestar
-
ⓐ \(10−(−18);28\)
ⓑ\(−25−11;−36\)
ⓑ restar \(−6\) de \(−13\)
73. el cociente de \(−6\) y la suma de \(a\) y \(b\)
- Contestar
-
\(\dfrac{−6}{a+b}\)
74. el producto de \(−13\) y la diferencia de \(c\) y \(d\)
Usar números enteros en aplicaciones
En los siguientes ejercicios, resuelve.
75. TemperaturaEl 15 de enero, la temperatura alta en Anaheim, California, fue \(84°\). Ese mismo día, la alta temperatura en Averrass, Minnesota, fue \(−12°\). ¿Cuál fue la diferencia entre la temperatura en Anaheim y la temperatura en Averrass?
- Contestar
-
\(96^\circ\)
76. TemperaturaEl 21 de enero, la temperatura alta en Palm Springs, California, fue \(89°\), y la alta temperatura en Whitefield, New Hampshire, fue \(−31°\). ¿Cuál fue la diferencia entre la temperatura en Palm Springs y la temperatura en Whitefield?
77. FutbolEn el primer down, los Chargers tenían el balón en su línea de 25 yardas. En las siguientes tres bajas, perdieron 6 yardas, ganaron 10 yardas, y perdieron 8 yardas. ¿Cuál fue la línea de patio al final del cuarto down?
- Contestar
-
21
78. FútbolEn el primer down, los Acereros tenían el balón en su línea de 30 yardas. En las siguientes tres bajas, ganaron 9 yardas, perdieron 14 yardas, y perdieron 2 yardas. ¿Cuál fue la línea de patio al final del cuarto down?
79. Cuenta de cheques Mayra tiene $124 en su cuenta de cheques. Ella escribe un cheque por 152 dólares. ¿Cuál es el nuevo saldo en su cuenta corriente?
- Contestar
-
\(−\$ 28\)
80. Cuenta de Cheques Reymonte tiene un saldo de \(−$49\) en su cuenta corriente. Deposita 281 dólares en la cuenta. ¿Cuál es el nuevo equilibrio?
Ejercicios de escritura
81. Explica por qué la suma de −8 y 2 es negativa, pero la suma de 8 y −2 es positiva.
- Contestar
-
Las respuestas variarán.
82. Da un ejemplo de tu experiencia de vida de sumar dos números negativos.
83. En tus propias palabras, establece las reglas para multiplicar y dividir enteros.
- Contestar
-
Las respuestas variarán.
84. ¿Por qué es \(−4^3=(−4)^3\)?
Autocomprobación
ⓐ Después de completar los ejemplos, utilice esta lista de verificación para evaluar su dominio de los objetivos de esta sección.
ⓑ Después de revisar esta lista de verificación, ¿qué harás para tener confianza en todos los objetivos?