Saltar al contenido principal
LibreTexts Español

6.5E: Ejercicios

  • Page ID
    51708
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    La práctica hace a la perfección

    Reconocer y utilizar el método apropiado para factorizar un polinomio completamente

    En los siguientes ejercicios, factor completamente.

    1. \(2n^2+13n−7\)

    Contestar

    \((2n−1)(n+7)\)

    2. \(8x^2−9x−3\)

    3. \(a^5+9a^3\)

    Contestar

    \(a^3(a^2+9)\)

    4. \(75m^3+12m\)

    5. \(121r^2−s^2\)

    Contestar

    \((11r−s)(11r+s)\)

    6. \(49b^2−36a^2\)

    7. \(8m^2−32\)

    Contestar

    \(8(m−2)(m+2)\)

    8. \(36q^2−100\)

    9. \(25w^2−60w+36\)

    Contestar

    \((5w−6)^2\)

    10. \(49b^2−112b+64\)

    11. \(m^2+14mn+49n^2\)

    Contestar

    \((m+7n)^2\)

    12. \(64x^2+16xy+y^2\)

    13. \(7b^2+7b−42\)

    Contestar

    \(7(b+3)(b−2)\)

    14. \(30n^2+30n+72\)

    15. \(3x^4y−81xy\)

    Contestar

    \(3xy(x−3)(x^2+3x+9)\)

    16. \(4x^5y−32x^2y\)

    17. \(k^4−16\)

    Contestar

    \((k−2)(k+2)(k^2+4)\)

    18. \(m^4−81\)

    19. \(5x5y^2−80xy^2\)

    Contestar

    \(5xy^2(x^2+4)(x+2)(x−2)\)

    20. \(48x^5y^2−243xy^2\)

    21. \(15pq−15p+12q−12\)

    Contestar

    \(3(5p+4)(q−1)\)

    22. \(12ab−6a+10b−5\)

    23. \(4x^2+40x+84\)

    Contestar

    \(4(x+3)(x+7)\)

    24. \(5q^2−15q−90\)

    25. \(4u^5v+4u^2v^3\)

    Contestar

    \(u^2(u+1)(u^2−u+1)\)

    26. \(5m^4n+320mn^4\)

    27. \(4c^2+20cd+81d^2\)

    Contestar

    prime

    28. \(25x^2+35xy+49y^2\)

    29. \(10m^4−6250\)

    Contestar

    \(10(m−5)(m+5)(m^2+25)\)

    30. \(3v^4−768\)

    31. \(36x^2y+15xy−6y\)

    Contestar

    \(3y(3x+2)(4x−1)\)

    32. \(60x^2y−75xy+30y\)

    33. \(8x^3−27y^3\)

    Contestar

    \((2x−3y)(4x^2+6xy+9y^2)\)

    34. \(64x^3+125y^3\)

    35. \(y^6−1\)

    Contestar

    \((y+1)(y−1)(y^2−y+1)\)

    36. \(y^6+1\)

    37. \(9x^2−6xy+y^2−49\)

    Responder

    \((3x−y+7)(3x−y−7)\)

    38. \(16x^2−24xy+9y^2−64\)

    39. \((3x+1)^2−6(3x−1)+9\)

    Responder

    \((3x−2)2\)

    40. \((4x−5)^2−7(4x−5)+12\)

    Ejercicios de escritura

    41. Explica lo que significa factorizar un polinomio por completo.

    Responder

    Las respuestas variarán.

    42. La diferencia de cuadrados se \(y^4−625\) puede factorizar como \((y^2−25)(y^2+25)\). Pero no se tiene en cuenta del todo. Qué más hay que hacer para factorizar completamente.

    43. De todos los métodos de factoring cubiertos en este capítulo (GCF, agrupación, deshacer FOILO, método 'ac', productos especiales) ¿cuál es el más fácil para usted? ¿Cuál es el más difícil? Explica tus respuestas.

    Responder

    Las respuestas variarán.

    44. Crea tres problemas de factoring que serían buenas preguntas de prueba para medir tus conocimientos de factoring. Mostrar las soluciones.

    Autocomprobación

    a. Después de completar los ejercicios, utilice esta lista de verificación para evaluar su dominio de los objetivos de esta sección.

    Esta tabla tiene 4 columnas, 1 fila y una fila de encabezado. La fila del encabezado etiqueta cada columna: Puedo, con confianza, con algo de ayuda y no, no lo consigo. La primera columna tiene la siguiente afirmación: reconocer y utilizar el método apropiado para factorizar un polinomio por completo. Las columnas restantes están en blanco.

    b. En una escala de 1-10, ¿cómo calificaría su dominio de esta sección a la luz de sus respuestas en la lista de verificación? ¿Cómo se puede mejorar esto?


    This page titled 6.5E: Ejercicios is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.