Saltar al contenido principal
LibreTexts Español

8.7: Términos clave del capítulo

  • Page ID
    150596
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Distribución binomial
    una variable aleatoria discreta (RV) que surge de los ensayos de Bernoulli; hay un número fijo,\(n\), de ensayos independientes. “Independiente” significa que el resultado de cualquier ensayo (por ejemplo, el ensayo 1) no afecta los resultados de los siguientes ensayos, y todos los ensayos se llevan a cabo en las mismas condiciones. En estas circunstancias el binomio\(RV\)\(X\) se define como el número de éxitos en n ensayos. La notación es:\(X \sim B(\bf{n,p})\). La media es\(\mu = np\) y la desviación estándar es\(\sigma=\sqrt{n p q}\). La probabilidad de exactamente\(x\) éxitos en los\(n\) ensayos es\(P(X=x)=\left(\begin{array}{l}{n} \\ {x}\end{array}\right) p^{x} q^{n-x}\).
    Intervalo de confianza (CI)
    una estimación de intervalo para un parámetro de población desconocido. Esto depende de:
    • el nivel de confianza deseado,
    • información que se conoce sobre la distribución (por ejemplo, desviación estándar conocida),
    • la muestra y su tamaño.
    Nivel de Confianza (CL)
    la expresión porcentual para la probabilidad de que el intervalo de confianza contenga el parámetro de población verdadera; por ejemplo, si el CL = 90%, entonces en 90 de cada 100 muestras la estimación del intervalo encerrará el parámetro de población verdadera.
    Grados de Libertad (df)
    el número de objetos en una muestra que son libres de variar
    Obligado de error para una media poblacional (MBE)
    el margen de error; depende del nivel de confianza, tamaño de la muestra y desviación estándar de la población conocida o estimada.
    Obligado de error para una proporción de población (EBP)
    el margen de error; depende del nivel de confianza, el tamaño de la muestra y la proporción estimada (a partir de la muestra) de éxitos.
    Estadísticas Inferenciales
    también llamada inferencia estadística o estadística inductiva; esta faceta de la estadística se ocupa de estimar un parámetro poblacional a partir de una estadística de muestra. Por ejemplo, si cuatro de las 100 calculadoras muestreadas son defectuosas podríamos inferir que el cuatro por ciento de la producción es defectuosa.
    Distribución Normal
    una variable aleatoria continua (RV) con pdf\(f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}\), donde\(\mu\) es la media de la distribución y\(\sigma\) es la desviación estándar, notación:\(X \sim N(\mu,\sigma)\). Si\(\mu = 0\) y\(\sigma = 1\), el RV se llama la distribución normal estándar.
    Parámetro
    una característica numérica de una población
    Estimación de puntos
    un solo número calculado a partir de una muestra y utilizado para estimar un parámetro de población
    Desviación estándar
    un número que es igual a la raíz cuadrada de la varianza y mide qué tan lejos están los valores de los datos de su media; notación:\(s\) para la desviación estándar de la muestra y\ sigma para la desviación estándar de la población
    T -Distribución de Student
    investigado y reportado por William S. Gossett en 1908 y publicado bajo el seudónimo de Student; las principales características de esta variable aleatoria (\(RV\)) son:
    • Es continuo y asume cualquier valor real.
    • El pdf es simétrico sobre su media de cero.
    • Se acerca a la distribución normal estándar\(n\) a medida que se hace más grande.
    • Hay una “familia” de t—distribuciones: cada representante de la familia está completamente definido por el número de grados de libertad, que depende de la aplicación para la que se esté utilizando la t.

    This page titled 8.7: Términos clave del capítulo is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.