Saltar al contenido principal
LibreTexts Español

4.1: Planteamiento del problema

  • Page ID
    51122
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    En este capítulo nos preocuparemos por caracterizar adecuadamente los medios homogéneos e isótropos cuando son iluminados por ondas armónicas planas inhomogéneas.

    Vamos a ver qué soluciones ecMm existen cuando \(\epsilon_{g e n}\) es un escalar (homogeneidad) y no depende de la posición (isotropía) tales que la forma de los campos sea

    \[
    \begin{aligned}
    \mathbf{E}(\mathbf{r}, t) &=\mathbf{E}_{0} e^{i\left(\mathbf{k}_{c} \cdot \mathbf{r}-\omega t\right)} \\
    \mathbf{H}(\mathbf{r}, t) &=\mathbf{H}_{0} e^{i\left(\mathbf{k}_{c} \cdot \mathbf{r}-\omega t\right)}
    \end{aligned}
    \]

    con \(\mathbf{E}_{0}, \mathbf{H}_{0}, \mathbf{k}_{c}, \omega\) constantes. Lo que queremos saber es qué relaciones vamos a obtener entre los parámetros de la onda y con los del material \(\left(\epsilon_{g e n}, \mu\right)\) si imponemos el cumplimiento de las ecuaciones de MAXWELL sobre el tipo de soluciones que acabamos de escribir.


    4.1: Planteamiento del problema is shared under a CC BY-SA 1.0 license and was authored, remixed, and/or curated by LibreTexts.