Saltar al contenido principal
LibreTexts Español

3.8: Fórmulas trigonométricas

  • Page ID
    131018
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Recojo aquí meramente como referencia un conjunto de fórmulas trigonométricas de uso común. Es cuestión de preferencia personal si se deben comprometerlos a la memoria. Probablemente sea justo comentar que cualquiera que se dedique regularmente a problemas en la mecánica celeste o disciplinas afines estará familiarizado con la mayoría de ellos, al menos por el uso frecuente, independientemente de que se haya hecho o no algún esfuerzo consciente para memorizarlos. Por lo menos, el lector debe ser consciente de su existencia, aunque tenga que mirar para recordar la fórmula exacta.

    \[\frac{\sin A}{\cos A} = \tan A\]

    \[\sin^2 A + \cos^2 A = 1\]

    \[1+\cot^2 A = \csc^2 A\]

    \[1+ \tan^2 A = \sec^2 A\]

    \[\sec A \csc A = \tan A + \cot A\]

    \[\sec^2 A \csc^2 A = \sec^2 A + \csc^2 A\]

    \[\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B\]

    \[\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B\]

    \[\tan (A \pm B ) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}\]

    \[\sin 2A = 2 \sin A \cos A \]

    \[\cos 2 A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A \]

    \[\tan 2 A = \frac{2 \tan A}{1 - \tan^2 A}\]

    \[\sin \frac{1}{2} A = \sqrt{\frac{1-\cos A}{2}}\]

    \[\cos \frac{1}{2} A = \sqrt{\frac{1+\cos A}{2}}\]

    \[\tan \frac{1}{2} A = \sqrt{\frac{1-\cos A}{1+\cos A}} = \frac{1-\cos A}{\sin A} = \frac{\sin A}{A + \cos A} = \csc A - \cot A\]

    \[\sin A + \sin B = 2 \sin \frac{1}{2} S \cos \frac{1}{2} D, \]

    donde\[S = A + B \quad \text{and} \quad D = A-B\]

    \[\sin A - \sin B = 2 \cos \frac{1}{2} S \sin \frac{1}{2} D\]

    \[\cos A + \cos B = 2\cos \frac{1}{2} S \cos \frac{1}{2} D\]

    \[\cos A - \cos B = -2 \sin \frac{1}{2} S \sin \frac{1}{2} D\]

    \[\sin A \sin B = \frac{1}{2} (\cos D - \cos S)\]

    \[\cos A \cos B = \frac{1}{2} (\cos D + \cos S)\]

    \[\sin A \cos B = \frac{1}{2} ( \sin S + \sin D)\]

    \[\sin A = \frac{T}{\sqrt{1+T^2}} = \frac{2T}{1+t^2},\]

    donde\[T = \tan A \text{ and } t = \tan \frac{1}{2} A\]

    \[\cos A = \frac{1}{\sqrt{1+T^2}} = \frac{1-t^2}{1+t^2}\]

    \[\tan A = T = \frac{2t}{1-t^2}\]

    \[s = \sin A, \quad c = \cos A\]

    \ begin {array} {l l}
    \ cos A = c &\ sin A = s\\
    \ cos 2 A = 2c^2 - 1 &\ sin 2 A = 2cs\
    \ cos 3 A = 4c^3 - 3c &\ sin 3 A = 3s - 4s^3\
    \ cos 4 A = 8c^4 - 8c^2 + 1 &\ sin 4 A = 4c (s - 2s^3)\\
    \ cos 5 A = 16c^5 - 20c^3 + 5c & ;\ sin 5A = 5s - 20s^3 + 16s^5\
    \ cos 6 A = 32c^6 - 48c^4 + 18c^2 - 1 &\ sin 6 A = 2c (3s - 16s^3 + 16s^5)\
    \ cos 7 A = 64c^7 - 112c^5 + 56c^3 - 7c &\ sin 7 A = 7s - 56s^^3 + 112s^5 - 64s^7\\
    \ cos 8A = 128 c^8 - 256c^6 + 160c^4 -32c^2 + 1 &\ sin 8A = 8c (s- 10s^3 + 24s^5 - 16s^7)\\
    \ end {array}

    \ begin {array} {l}
    \ cos^2 A =\ frac {1} {2} (\ cos 2A + 1)\
    \ cos^3 A =\ frac {1} {4} (\ cos 3A + 3\ cos A)\
    \ cos^4 A =\ frac {1} {8} (\ cos 4A + 4\ cos 2A + 3)\
    \ cos^5 = A\ frac {1} {16} (\ cos 5A + 5\ cos 3A + 10\ cos A)\\
    \ cos^6 A =\ frac {1} { 32} (\ cos 6A + 6\ cos 4A + 15\ cos 2A + 10)\
    \ cos^7 A =\ frac {1} {64} (\ cos 7A + 7\ cos 5A + 21\ cos 3A + 35\ cos A)\
    \ cos^8 A =\ frac {1} {128} (\ cos 8A + 8\ cos 6A + 28\ cos 4A + 56\ cos + 35)\\
    \ end {array}

    \ begin {array} {l}
    \ sin^2 A =\ frac {1} {2} (1-\ cos 2A)\\
    \ sin^3 A =\ frac {1} {4} (3\ sin A -\ sin 3A)\\
    \ sen ^4 A =\ frac {1} {8} (\ cos 4A - 4\ cos 2A + 3)\\
    \ sin^5 = A\ frac {1} {16} (\ sin 5A - 5\ sin 3A + 10\ sin A)\\
    \ sin^6 A =\ frac {1} {32} ( 10 - 15\ cos 2A + 6\ cos 4A -\ cos 6A)\
    \ sen ^7 A =\ frac {1} {64} (35\ sin A - 21\ sin 3A + 7\ sin 5A -\ sin 7A)\
    \ sin^8 A =\ frac {1} {128} (\ cos 8A - 8\ cos 6A + 28\ cos 4A - 56\ cos 2A + 35)\
    \ end {matriz}

    \[\sin A = A - \frac{A^3}{3!} + \frac{A^5}{5!} - ...\]

    \[\cos A = 1 - \frac{A^2}{2!} + \frac{A^4}{4!} - ...\]

    \ begin {array} {c c}
    \ int_0^ {\ pi/2}\ sin^m θ\ cos^n θ dθ =\ frac {(m-1)! (n-1)!! X} {(m+n)!!} , &\ texto {donde} X=\ pi/2\ texto {si} m\ texto {y} n\ texto {son ambos pares, y}\\ & X=1\ texto {de lo contrario}. \\
    \ fin {matriz}

    \(e^{niθ} = e^{inθ}\)(Teorema de Moivre - el único que necesitas conocer. Todos los demás se pueden deducir de ello.)

    Triángulos planos:

    \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}\]

    \[a^2 = b^2 + c^2 -2bc \cos A\]

    \[a \cos B + b \cos A = c\]

    \[s = \frac{1}{2} (a+b+c)\]

    \[\sin \frac{1}{2} A = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}\]

    \[\cos \frac{1}{2} A = \sqrt{\frac{s(s-a)}{bc}}\]

    \[\tan \frac{1}{2} A = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}\]

    Triángulos esféricos

    \[\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}\]

    \[\cos a = \cos b \cos c + \sin b \sin c \cos A\]

    \[\cos A = -\cos B \cos C + \sin B \sin C \cos a\]

    \[\cos (\text{IS}) \cos (\text{IA}) = \sin (\text{IS}) \cot (\text{OS}) - \sin (\text{IA}) \cot (\text{OA})\]


    This page titled 3.8: Fórmulas trigonométricas is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.