Saltar al contenido principal
LibreTexts Español

7.5: Un dipolo magnético de punto

  • Page ID
    127649
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Consideremos un momento dipolo magnético oscilante, mz, orientado a lo largo del eje z y localizado en el origen de coordenadas similares al caso del dipolo eléctrico oscilante de la Figura (7.4.3). Si el dipolo fuera estático, generaría un potencial vectorial que tuviera solo un\(\phi\) componente -componente:

    \[\text{A}_{\phi}=\frac{\mu_{0}}{4 \pi} \frac{\text{m}_{\text{z}} \sin \theta}{\text{R}^{2}}. \label{7.34}\]

    Esto se desprende de la expresión general para el potencial vectorial generado por un dipolo puntual, Ecuación (4.3.4)

    \[\vec{\text{A}}=\frac{\mu_{0}}{4 \pi} \frac{(\vec{\text{m}} \times \vec{\text{R}})}{\text{R}^{3}}. \nonumber \]

    Sin embargo, se puede demostrar que debido a los efectos del retardo de tiempo la ecuación para el potencial vectorial, (\ ref {7.34}) debe ser modificada para que se lea

    \[\text{A}_{\phi}=\frac{\mu_{0}}{4 \pi} \sin \theta\left[\frac{\text{m}_{\text{z}}}{\text{R}^{2}}+\frac{\text{m}_{\text{z}}}{\text{cR}}\right]. \label{7.35}\]

    Los campos derivados de esta expresión para el potencial del vector,\(\vec{\text{B}}=\operatorname{curl}(\vec{\text{A}})\), son

    \[\text{B}_{\text{R}}=\frac{\mu_{0}}{4 \pi} 2 \cos \theta\left[\frac{\text{m}_{\text{z}}}{\text{R}^{3}}+\frac{\dot{\text{m}}_{\text{z}}}{\text{cR}^{2}}\right]_{\text{t}_{\text{R}}}, \label{7.36}\]

    \[\text{B}_{\theta}=\frac{\mu_{0}}{4 \pi} \sin \theta\left[\frac{\text{m}_{z}}{\text{R}^{3}}+\frac{\dot{\text{m}}_{z}}{\text{c} \text{R}^{2}}+\frac{\ddot{\text{m}}_{z}}{\text{c}^{2} \text{R}}\right]_{\text{t}_{\text{R}}}, \nonumber \]

    \[ \text{B}_{\phi}=0=\text{E}_{\text{R}}=\text{E}_{\theta}, \nonumber \]

    \[\text{E}_{\phi}=-\frac{\mu_{0}}{4 \pi} \sin \theta\left[\frac{\dot{\text{m}}_{\text{z}}}{\text{R}^{2}}+\frac{\ddot{\text{m}}_{\text{z}}}{\text{cR}}\right]_{\text{t}_{\text{R}}}. \nonumber \]

    donde t R = t − R/c. Lejos del dipolo, los campos de radiación que disminuyen con la distancia como (1/R) están dados por

    \[\text{B}_{\theta}=\frac{\mu_{0}}{4 \pi} \frac{\ddot{\text{m}}_{z}}{\text{c}^{2} \text{R}} \sin \theta, \label{7.37}\]
    \[\text{E}_{\phi}=-\frac{\mu_{0}}{4 \pi} \frac{\ddot{\text{m}}_{z}}{\text{cR}} \sin \theta=\text{cB}_{\theta}, \nonumber\]

    ambos evaluados en el tiempo retardado t R. Así como para el dipolo eléctrico campos lejanos\(|\vec{\text{E}}|=\text{c}|\vec{\text{B}}|\),\(\vec E\) y y\(\vec B\) son ortogonales entre sí y a la línea que une la posición del observador al dipolo.


    This page titled 7.5: Un dipolo magnético de punto is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and Bretislav Heinrich.