Saltar al contenido principal
LibreTexts Español

3.4: Cambio de Variables

  • Page ID
    126095
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Otra técnica útil para resolver integrales es cambiar variables. Considera\[\int_0^\infty \frac{dx}{x^2 + 1}.\] lo integral Podemos resolver esto haciendo un cambio de variables\(x = \tan(u)\). Esto implica (i) reemplazar todas las ocurrencias de\(x\) en el integrando con\(\tan(u)\), (ii) reemplazar los límites integrales, y (iii) reemplazar\(dx\) con\((dx/du) \, du = 1/[\cos(u)]^2 du\):\[\begin{align} \int_0^\infty \frac{dx}{x^2 + 1} &= \int_0^{\pi/2} \frac{1}{[\tan(u)]^2 + 1} \cdot \frac{1}{[\cos(u)]^2} \; du \\ &= \int_0^{\pi/2} \frac{1}{[\sin(u)]^2 + [\cos(u)]^2} \; du.\end{align}\] Debido al teorema de Pitágoras, el integrando se reduce a 1, por lo que \[\int_0^\infty \frac{dx}{x^2 + 1} = \int_0^{\pi/2} du = \frac{\pi}{2}.\]Claramente, esta técnica a menudo requiere cierta astucia y/o prueba y error para elegir el cambio correcto de variables.


    This page titled 3.4: Cambio de Variables is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.