2: Momentos de inercia
- Page ID
- 131110
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)En este capítulo consideraremos cómo calcular el (segundo) momento de inercia para diferentes tamaños y formas del cuerpo, así como ciertos teoremas asociados. Pero habría que preguntarse: “¿Cuál es el propósito de calcular los cuadrados de las distancias de lotes de partículas desde un eje, multiplicar estos cuadrados por la masa de cada uno, y sumarlos todos juntos?
- 2.2: Significado de la inercia rotacional
- Si una fuerza actúa de un cuerpo, el cuerpo se acelerará. La relación entre la fuerza aplicada y la aceleración resultante es la inercia (o masa) del cuerpo.
- 2.3: Momentos de inercia de algunas formas simples
- “¿Por cuántas formas diferentes de cuerpo debo comprometer a la memoria las fórmulas para sus momentos de inercia?” Yo estaría tentado a decir: “Ninguno”. No obstante, si alguno va a ser comprometido con la memoria, sugeriría que la lista a memorizar se limite a esos pocos cuerpos que probablemente se encuentren muy a menudo (sobre todo si pueden ser utilizados para determinar rápidamente los momentos de inercia de otros cuerpos) y para los cuales es más fácil recordar los fórmulas que derivarlas.
- 2.4: Radio de giro
- El segundo momento de inercia de cualquier cuerpo se puede escribir en la forma mk², donde k es el radio de giro. Si toda la masa de un cuerpo estuviera concentrada en su radio de giro, su momento de inercia seguiría siendo el mismo.
- 2.8: Torus
- Las inercias rotacionales de los toros sólidos y huecos (radio grande a, radio pequeño b) se dan a continuación para referencia y sin derivación. Se pueden derivar por cálculo integral, y su derivación se recomienda como un desafío para el lector.
- 2.10: Péndulos
- Estamos familiarizados con la ecuación de movimiento para una masa que vibra al final de un resorte de fuerza constante - esto es simple movimiento armónico. La mecánica del péndulo de torsión es similar.
- 2.16: Rotación de Ejes - Tres Dimensiones
- Si es posible encontrar un conjunto de ejes con respecto a los cuales los momentos de producto F, G y H son todos cero, estos ejes se denominan los ejes principales del cuerpo, y los momentos de inercia con respecto a estos ejes son los principales momentos de inercia.
- 2.17: Rotación de Cuerpo Sólido y Tensor de Inercia
- Se pretende que este capítulo se limite al cálculo de los momentos de inercia de cuerpos de diversas formas, y no con el enorme tema de la dinámica rotacional de los cuerpos sólidos, lo que requiere de un capítulo por sí mismo. En esta sección menciono meramente por interés dos pequeños temas que involucran los ejes principales.
- 2.18: Determinación de los Ejes Principales
- Los ejes principales son los tres ejes mutuamente perpendiculares en un cuerpo alrededor del cual se maximiza el momento de inercia.
- 2.19: Momento de inercia con respecto a un punto
- Por “momento de inercia” nos hemos referido hasta ahora al segundo momento de masa con respecto a un eje. Pudimos identificarlo fácilmente con la inercia rotacional con respecto al eje, es decir, la relación de un par aplicado a la aceleración angular resultante.
- 2.21: Tetraedros
- El tetraedro regular sólido y la molécula de metano son ambos tops esféricos, y el momento de inercia es el mismo alrededor de cualquier eje a través del centro de masa.
Miniatura: Momento de inercia de una varilla delgada alrededor de un eje perpendicular a la longitud de la varilla y que pasa por su centro. (Dominio público; Krishnavedala).