4.8: Equinumerosidad
- Page ID
- 103708
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Tenemos una noción intuitiva de “tamaño” de conjuntos, que funciona bien para conjuntos finitos. Pero ¿qué pasa con los conjuntos infinitos? Si queremos llegar a una forma formal de comparar los tamaños de dos conjuntos de cualquier tamaño, es una buena idea comenzar por definir cuándo los conjuntos son del mismo tamaño. Aquí está Frege:
Si un mesero quiere estar seguro de que ha puesto exactamente tantos cuchillos como platos sobre la mesa, no necesita contar ninguno de ellos, si simplemente pone un cuchillo a la derecha de cada plato, para que cada cuchillo de la mesa quede a la derecha de algún plato. Por lo tanto, las placas y cuchillos están correlacionados de manera única entre sí, y de hecho a través de esa misma relación espacial. (Frege, 1884, §70)
La perspicacia de este pasaje se puede sacar a relucir a través de una definición formal:
\(A\)es equinumero con\(B\)\(\cardeq{A}{B}\), escrito, si hay una biyección\(f \colon A \to B\).
La equinumerosidad es una relación de equivalencia.
Prueba. Debemos demostrar que la equinumerosidad es reflexiva, simétrica y transitiva. Dejar\(A, B\), y\(C\) ser conjuntos.
Reflexividad. El mapa de identidad\(\Id{A} \colon A \to A\), donde\(\Id{A} (x) = x\) para todos\(x \in A\), es una biyección. Entonces\(\cardeq{A}{A}\).
Simetría. Supongamos\(\cardeq{A}{B}\), es decir, hay una biyección\(f\colon A \to B\). Dado que\(f\) es biyectiva, su inversa\(f^{-1}\) existe y también es biyectiva. De ahí,\(f^{-1}\colon B \to A\) es una bijección, entonces\(\cardeq{B}{A}\).
Transitividad. Supongamos que\(\cardeq{A}{B}\) y\(\cardeq{B}{C}\), es decir, hay bijecciones\(f\colon A \to B\) y\(g\colon B \to C\). Entonces la composición\(\comp{f}{g}\colon A \to C\) es biyectiva, así que eso\(\cardeq{A}{C}\). ◻
Proposición\(\PageIndex{2}\)
Si\(\cardeq{A}{B}\), entonces\(A\) es contable si y sólo si\(B\) es.
Prueba. Supongamos\(\cardeq{A}{B}\), entonces hay alguna bijección\(f \colon A \to B\), y supongamos que eso\(A\) es contable. Entonces ya sea\(A = \emptyset\) or there is a surjective function \(g\colon \PosInt \to A\). If \(A = \emptyset\), then \(B = \emptyset\) also (otherwise there would be an element \(y \in B\) but no \(x \in A\) with \(g(x) = y\)). If, on the other hand, \(g\colon \PosInt \to A\) is surjective, then \(\comp{f}{g} \colon \PosInt \to B\) is surjective. To see this, let \(y \in B\). Since \(g\) is surjective, there is an \(x \in A\) such that \(g(x) = y\). Since \(f\) is surjective, there is an \(n \in \PosInt\) such that \(f(n) = x\). Hence, \[(\comp{f}{g})(n) = g(f(n)) = g(x) = y\nonumber\] and thus \(\comp{f}{g}\) is surjective. We have that \(\comp{f}{g}\) is an enumeration of \(B\), and so \(B\) is contable.
Si\(B\) es contable, obtenemos que\(A\) es contable repitiendo el argumento con la biyección\(f^{-1}\colon B \to A\) en lugar de\(f\). ◻
Problema\(\PageIndex{1}\)
\(\cardeq{A}{C}\)Demuéstralo si y\(\cardeq{B}{D}\), y\(A \cap B = C \cap D = \emptyset\), entonces\(\cardeq{A \cup B}{C \cup D}\).
Problema\(\PageIndex{2}\)
Mostrar que si\(A\) es infinito y contable, entonces\(\cardeq{A}{\Nat}\).