Saltar al contenido principal
LibreTexts Español

12.2: Operadores vectoriales

  • Page ID
    83729
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Esta sección contiene un resumen de los operadores vectoriales expresados en cada uno de los tres sistemas principales de coordenadas:

    • Cartesiano (\(x\),\(y\),\(z\))
    • cilíndrico (\(\rho\),\(\phi\),\(z\))
    • esférico (\(r\),\(\theta\),\(\phi\))

    Los vectores de base asociados se identifican usando un caret (\(\hat{~}\)) sobre el símbolo. El operando vectorial\({\bf A}\) se expresa en términos de componentes en las direcciones de base de la siguiente manera:

    • Cartesiano:\({\bf A} = \hat{\bf x}A_x + \hat{\bf y}A_y + \hat{\bf z}A_z\)
    • Cilíndrico\({\bf A} = \hat{\bf \rho}A_{\rho} + \hat{\bf \phi}A_{\phi} + \hat{\bf z}A_z\)
    • esférico:\({\bf A} = \hat{\bf r}A_r + \hat{\bf \theta}A_{\theta} + \hat{\bf \phi}A_{\phi}\)

    Gradiente

    Gradiente en coordenadas cartesianas:

    \ begin {align}\ nabla f &=\ hat {\ bf x}\ frac {\ parcial f} {\ parcial x} +\ hat {\ bf y}\ frac {\ parcial f} {\ parcial y} +\ hat {\ bf z}\ frac {\ parcial f} {\ parcial z} &\ end {align}

    Gradiente en coordenadas cilíndricas:

    \ begin {align}\ nabla f &=\ hat {\ bf\ rho}\ frac {\ parcial f} {\ parcial\ rho} +\ hat {\ bf\ phi}\ frac {1} {\ rho}\ frac {\ parcial f} {\ parcial\ phi} +\ hat {\ bf z}\ frac {\ parcial f} {\ parcial z} &\ end {alinear}

    Gradiente en coordenadas esféricas:

    \ begin {align}\ nabla f &=\ hat {\ bf r}\ frac {\ parcial f} {\ parcial r} +\ hat {\ bf\ theta}\ frac {1} {r}\ frac {\ parcial f} {\ parcial\ theta} +\ sombrero {\ bf\ phi}\ frac {1} {r\ sin\ theta}\ frac {parcial\ f} {\ parcial\ phi} &\ end {align}

    Divergencia

    Divergencia en las coordenadas cartesianas:

    \ begin {align}\ nabla\ cdot {\ bf A} &=\ frac {\ parcial a_x} {\ parcial x} +\ frac {\ parcial a_Y} {\ parcial y} +\ frac {\ parcial a_Z} {\ parcial z} &\ end {align}

    Divergencia en coordenadas cilíndricas:

    \ begin {align}\ nabla\ cdot {\ bf A} &=\ frac {1} {\ rho}\ frac {\ parcial} {\ parcial\ rho}\ izquierda (\ rho A_ {\ rho}\ rho}\ derecha) +\ frac {1} {\ rho}\ frac {\ parcial A_ {\ phi}} {\ parcial\ phi} +\ frac {\ parcial a_Z} {\ z parcial} &\ end {align}

    Divergencia en coordenadas esféricas:

    \ begin {align}\ nabla\ cdot {\ bf A} &= ~~\ frac {1} {r^2}\ frac {\ parcial} {\ parcial} {\ parcial}\ izquierda (r^2 a_R\ derecha) &\ nonumber\\ &~~ +\ frac {1} {r\ sin\ theta}\ frac {\ parcial} {\ parcial\ theta} izquierda (A_ {\ theta}\ sin\ theta\ derecha) &\ nonumber\\ &~~ +\ frac {1} {r\ sin\ theta}\ frac {\ parcial A_ {\ phi}} {\ parcial\ phi} & \ end {align}

    Curl

    Curl en coordenadas cartesianas:

    \ begin {align}\ nabla\ times {\ bf A} &= ~~\ hat {\ bf x}\ izquierda (\ frac {\ parcial a_z} {\ parcial y} -\ frac {\ parcial a_y} {\ parcial z}\ derecha) &\ nonumber\\ &~~ +\ hat {\ bf y}\ izquierda (\ frac {\ parcial a_x} {parcial\ z} -\ frac {\ parcial a_Z} {\ parcial x}\ derecha) &\ nonumber\\ &~~ +\ hat {\ bf z}\ izquierda (\ frac {\ A_y parcial} {\ x parcial} -\ frac {\ parcial a_x} {\ parcial y}\ derecha) &\ etiqueta {m0139_ecurlCart}\ end {align}

    Curl en coordenadas cilíndricas:

    \ begin {align}\ nabla\ times {\ bf A} &= ~~\ hat {\ bf\ rho}\ left (\ frac {1} {\ rho}\ frac {\ parcial a_Z} {\ parcial\ phi} -\ frac {\ parcial A_ {\ phi}} {\ parcial z}\ derecha) &\ nonumber\\ &~~ +\ hat {\ bf\ phi}\ izquierda (\ frac {\ parcial A_ {\ rho}} {\ z parcial} -\ frac {\ parcial a_Z} {\ parcial\ rho}\ derecha) &\ nonumber\\ & amp; ~~ +\ hat {\ bf z}\ frac {1} {\ rho}\ izquierda [\ frac {\ parcial} {\ parcial\ rho}\ izquierda (\ rho A_ {\ phi}\ derecha) -\ frac {\ parcial A_ {\ rho}} {\ parcial\ phi}\ derecha] &\ end {align}

    Curl en coordenadas esféricas:

    \ begin {align}\ nabla\ times {\ bf A} &= ~~\ hat {\ bf r}\ frac {1} {r\ sin\ theta}\ izquierda [\ frac {\ parcial} {\ parcial\ theta}\ izquierda (A_ {\ phi}\ sin\ theta\ derecha) -\ frac {\ parcial A_ {\ theta}} {\ phi parcial\}\ derecha] &\ nonumber\\ &~~ +\ sombrero {\ bf\ theta}\ frac {1} {r}\ izquierda [\ frac {1} {\ sin\ theta}\ frac {\ parcial a_R} {\ parcial\ phi} -\ frac {\ parcial} {\ r parcial}\ izquierda (rA_ {\ phi}\ derecha)\ derecha] &\ nonumber\\ &~~ +\ hat {\ bf\ phi}\ frac {1} {r}\ izquierda [\ frac {\ parcial} {\ parcial}\ izquierda (r A_ {\ theta}\ derecha) -\ frac {parcial\ a_R} {\ parcial\ theta}\ derecha]\ etiqueta {m0139_ecurlSPh} &\ end {align}

    Laplaciano

    Laplaciano en coordenadas cartesianas:

    \ begin {align}\ nabla^2 f &=\ frac {\ parcial^2 f} {\ parcial x^2} +\ frac {\ parcial^2 f} {\ parcial y^2} +\ frac {\ parcial^2 f} {\ parcial z^2} &\ end {align}

    Laplaciano en coordenadas cilíndricas:

    \ begin {align}\ nabla^2 f &=\ frac {1} {\ rho}\ frac {\ parcial} {\ parcial\ rho}\ izquierda (\ rho\ frac {\ parcial\ rho} {\ parcial\ rho}\ derecha) +\ frac {1} {\ rho^2}\ frac {\ parcial^2 f} {\ parcial\ phi^2} +\ frac {\ parcial^2 f} {\ parcial z^2} &\ end {align}

    Laplaciano en coordenadas esféricas:

    \ begin {align}\ nabla^2 f &= ~~\ frac {1} {r^2}\ frac {\ parcial} {\ parcial} {\ r parcial}\ izquierda (r^2\ frac {\ parcial f} {\ r parcial}\ derecha) &\ nonumber\\ &~~ +\ frac {1} {r^2\ sin\ theta}\ frac {parcial} {\ parcial\ theta}\ izquierda (\ frac {\ parcial f} {\ parcial\ theta}\ sin\ theta\ derecha) &\ nonumber\\ &~~ +\ frac {1} {r^2\ sin^2\ theta}\ frac {\ parcial^2 f} {\ parcial\ phi^2} &\ end {align}


    This page titled 12.2: Operadores vectoriales is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Steven W. Ellingson (Virginia Tech Libraries' Open Education Initiative) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.