Saltar al contenido principal

# 15.12: Bases Ortonormales en Espacios Reales y Complejos

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

## Notación

Transpose operador$$A^T$$ voltea la matriz a través de su diagonal.

\ [\ begin {array} {l}
A=\ left (\ begin {array} {ll}
a_ {1,1} & a_ {1,2}\
a_ {2,1} & a_ {2,2}
\ end {array}\ derecha)\\
A^ {T} =\ left (\ begin {array} {ll}
a_ {1,1} & a_ {2,1}\
a_ {1,2} & a_ _ {2,2}
\ end {array}\ right)
\ end {array}\ nonumber\]

Columna$$i$$ de$$A$$ es fila$$i$$ de$$A^T$$

Recall, producto interno

\ [\ boldsymbol {x} =\ left (\ begin {array} {c}
x_ {0}\\
x_ {1}\\
\ vdots\\
x_ {n-1}
\ end {array}\ derecha)\ nonumber\]

\ [\ boldsymbol {y} =\ left (\ begin {array} {c}
y_ {0}\\
y_ {1}\\
\ vdots\\
y_ {n-1}
\ end {array}\ derecha)\ nonumber\]

\ [\ negridsymbol {x} ^ {T}\ negridsymbol {y} =\ left (\ begin {array} {cccc}
x_ {0} & x_ {1} &\ ldots & x_ {n-1}
\ end {array}\ derecha)\ left (\ begin {array} {c}
y_ {0}\
y_ {1}\\
\ vdots\
y_ _ {n-1}
\ end {array}\ derecha) =\ suma_ { i}\ negridsymbol {x} _ {i}\ negridsymbol {y} _ _ {i} =\ langle\ negridsymbol {y},\ negridsymbol {x}\ rangle\ nonumber\]

encendido$$\mathbb{R}^n$$.

Transposición hermitiana$$A^H$$, transposición y conjugación

\ [\ begin {array} {c}
A^ {\ mathrm {H}} =\ overline {A^ {T}}\\ langle
\ negridsymbol {y},\ negridsymbol {x}\ rangle=\ negridsymbol {x} ^ {\ mathrm {H}}\ negridsymbol {y} =\ sum_ {i}\ negridsymbol {x} _ i}\ bar {\ boldsymbol {y}} _ {i}
\ end {array}\ nonumber\]

encendido$$\mathbb{C}^n$$.

Ahora, dejemos$$\left\{b_{0}, b_{1}, \dots, b_{n-1}\right\}$$ ser una base ortonormal para$$\mathbb{C}^n$$

\ [\ begin {array} {c}
i=\ {0,1,\ ldots, n-1\}\ izquierda\ langle b_ {i}, b_ {i}\ derecha\ rangle=1\
\ izquierda (i\ neq j,\ izquierda\ langle b_ {i}, b_ {i}\ derecha\ rangle=b_ {j} ^ {H} b_ {i} =0\ derecha)
\ end {array}\ nonumber\]

Matriz de base:

\ [B=\ left (\ begin {array} {cccc}
\ vdots &\ vdots &\ vdots\\
b_ {0} & b_ {1} &\ dots & b_ {n-1}\\\ vdots &
\ vdots &\ vdots &\ vdots
\ end {array}\ right)\ nonumber\]

Ahora,

\ [B^ {\ mathrm {H}} B=\ left (\ begin {array} {ccc}
\ cdots & b_ {0} ^ {\ mathrm {H}} &\ cdots\
\ cdots & b_ {1} ^ {\ mathrm {H}} &\ cdots\\
&\ vdots\
\ cdots & b_ {n-1} ^ {\ mathrm {H}} &\ ldots
\ end {array}\ derecha)\ left (\ begin {array } {cccc}
\ vdots &\ vdots &\ vdots\\
b_ {0} & b_ {1} &\ cdots & b_ {n-1}\\
\ vdots &\ vdots & &\ vdots
\ end {array}\ derecha) =\ left (\ begin {array} {cccc}
b_ {0} ^ {\ mathrm {H}} b_ {0}} & b_ {0} ^ {\ mathrm {H}} b_ {1} &\ ldots & b_ {0} ^ {\ mathrm {H}} b_ {n-1}\\
b_ {1} ^ {\ mathrm {H}} b_ {0} & b_ {1} ^ {\ mathrm {H}} b_ {1} &\ ldots & b_ {1} ^ {\ mathrm {H}} b_ {n-1}\
\ vdots & &\\
b_ {n-1} ^ {\ mathrm {H}} b_ {0} & b_ {n-1} ^ {\ mathrm {H}} b_ {1} &\ ldots & b_ {n-1} ^ {\ mathrm {H}} b_ {n-1}
\ end {array}\ derecha)\ nonumber\]

Para base ortonormal con matriz de base$$B$$

$B^H=B^{-1} \nonumber$

($$B^{T}=B^{-1} \text {in } \mathbb{R}^{n}$$in$$\mathbb{R}^n$$)$$B^H$$ es fácil de calcular mientras que$$B^{-1}$$ es difícil de calcular.

Entonces, para encontrar$$\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right\}$$ tal que

$\boldsymbol{x}=\sum_{i} \alpha_{i} b_{i} \nonumber$

Calcular

$\left(\boldsymbol{\alpha}=B^{-1} \boldsymbol{x}\right) \Rightarrow\left(\boldsymbol{\alpha}=B^{H} \boldsymbol{x}\right) \nonumber$

Utilizando una base ortonormal nos libramos de la operación inversa.

This page titled 15.12: Bases Ortonormales en Espacios Reales y Complejos is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..