Saltar al contenido principal
LibreTexts Español

4.10: Suplemento de ejercicio

  • Page ID
    112263
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Expresiones algebraicas

    Para los siguientes problemas, escribe el número de términos que aparecen, luego escribe los términos.

    Ejercicio\(\PageIndex{1}\)

    \(4x^2 + 7x + 12\)

    Contestar

    tres:\(4x^2, 7x, 12\)

    Ejercicio\(\PageIndex{2}\)

    \(14y^6\)

    Ejercicio\(\PageIndex{3}\)

    \(c + 8\)

    Contestar

    dos:\(c, 8\)

    Ejercicio\(\PageIndex{4}\)

    \(8\)

    Enumerar, en su caso, los factores comunes para los siguientes problemas.

    Ejercicio\(\PageIndex{5}\)

    \(a^2 + 4a^2 + 6a^2\)

    Contestar

    \(a^2\)

    Ejercicio\(\PageIndex{6}\)

    \(9y^4 - 18y^4\)

    Ejercicio\(\PageIndex{7}\)

    \(12x^2y^3 + 36y^3\)

    Contestar

    \(12y^3\)

    Ejercicio\(\PageIndex{8}\)

    \(6(a+4) + 12(a+4)\)

    Ejercicio\(\PageIndex{9}\)

    \(4(a+2b)+6(a+2b)\)

    Contestar

    \(2(a+2b)\)

    Ejercicio\(\PageIndex{10}\)

    \(17x^2y(z+4) + 51y(z+4)\)

    Ejercicio\(\PageIndex{11}\)

    \(6a^2b^3c + 5x^2y\)

    Contestar

    no hay factores comunes

    Para los siguientes problemas, conteste la pregunta de cuántos.

    Ejercicio\(\PageIndex{12}\)

    \(x\)está en\(9x\)?

    Ejercicio\(\PageIndex{13}\)

    \((a+b)\)está en\(12(a+b)\)?

    Contestar

    12

    Ejercicio\(\PageIndex{14}\)

    \(a^4\)'s en\(6a^4\)

    Ejercicio\(\PageIndex{15}\)

    \(c^3\)está en\(2a^2bc^3\)?

    Contestar

    \(2a^2b\)

    Ejercicio\(\PageIndex{16}\)

    \((2x+3y)^2\)está en\(5(x+2y)(2x+3y)^3\)?

    Para los siguientes problemas, se dará un término seguido de un grupo de sus factores. Enumere el coeficiente del grupo de factores dado.

    Ejercicio\(\PageIndex{17}\)

    \(8z, z\)

    Contestar

    \(8\)

    Ejercicio\(\PageIndex{18}\)

    \(16a^3b^2c^4, c^4\)

    Ejercicio\(\PageIndex{19}\)

    \(7y(y+3), 7y\)

    Contestar

    \((y+3)\)

    Ejercicio\(\PageIndex{20}\)

    \((-5)a^5b^5c^5, bc\)

    Ecuaciones

    Para los siguientes problemas, observe las ecuaciones y escriba la relación que se está expresando.

    Ejercicio\(\PageIndex{21}\)

    \(a = 3b\)

    Contestar

    El valor de\(a\) es igual a tres veces el valor de\(b\).

    Ejercicio\(\PageIndex{22}\)

    \(r = 4t + 11\)

    Ejercicio\(\PageIndex{23}\)

    \(f = \dfrac{1}{2}m^2 + 6g\)

    Contestar

    El valor de\(f\) es igual a seis veces\(g\) más luego media veces el valor de\(m\) cuadrado.

    Ejercicio\(\PageIndex{24}\)

    \(x = 5y^3 + 2y + 6\)

    Ejercicio\(\PageIndex{25}\)

    \(P^2 = ka^3\)

    Contestar

    El valor de\(P\) cuadrado es igual al valor de los tiempos en\(a\) cubos\(k\).

    Utilizar la evaluación numérica para evaluar las ecuaciones para los siguientes problemas.

    Ejercicio\(\PageIndex{26}\)

    \(C = 2 \pi r\). Find\(C\)\(\pi\) se aproxima por\(3.14\) y\(r = 6\)

    Ejercicio\(\PageIndex{27}\)

    \(I = \dfrac{E}{R}\). Encontrar\(I\) es\(E = 20\) y\(R = 2\).

    Contestar

    \(10\)

    Ejercicio\(\PageIndex{28}\)

    \(I=prt\). Encuentra\(I\) si\(p=1000\),\(r=0.06\), y\(t=3\).

    Ejercicio\(\PageIndex{29}\)

    \(E = mc^2\). Encuentra\(E\) si\(m = 120\) y\(c = 186,000\).

    Contestar

    \(4.1515 \times 10^{12}\)

    Ejercicio\(\PageIndex{30}\)

    \(z = \dfrac{x-u}{s}\). Encuentra\(z\) si\(x = 42\),\(u = 30\), y\(s = 12\).

    Ejercicio\(\PageIndex{31}\)

    \(R = \dfrac{24C}{P(n+1)}\). Encuentra\(R\) si\(C = 35\),\(P = 300\), y\(n = 19\).

    Contestar

    \(\dfrac{7}{50}\)o\(0.14\)

    Clasificación de Expresiones y Ecuaciones

    Para los siguientes problemas, clasifique cada uno de los polinomios como monomio, binomio o trinomio. Anotar el grado de cada polinomio y escribir el coeficiente numérico de cada término.

    Ejercicio\(\PageIndex{32}\)

    \(2a+9\)

    Ejercicio\(\PageIndex{33}\)

    \(4y^3 + 3y + 1\)

    Contestar

    trinomio, cúbico; 4, 3, 1

    Ejercicio\(\PageIndex{34}\)

    \(10a^4\)

    Ejercicio\(\PageIndex{35}\)

    \(147\)

    Contestar

    monomio; cero; 147

    Ejercicio\(\PageIndex{36}\)

    \(4xy + 2yz^2 + 6x\)

    Ejercicio\(\PageIndex{37}\)

    \(9ab^2c^2 + 10a^3b^2c^5\)

    Contestar

    binomio; décimo; 9, 10

    Ejercicio\(\PageIndex{38}\)

    \((2xy^3)^0, xy^3 \not = 0\)

    Ejercicio\(\PageIndex{39}\)

    ¿Por qué la expresión\(\dfrac{4x}{3x-7}\) no es un polinomio?

    Contestar

    ... porque hay una variable en el denominador

    Ejercicio\(\PageIndex{40}\)

    ¿Por qué la expresión\(5a^{\dfrac{3}{4}}\) no es un polinomio?

    Para los siguientes problemas, clasifique cada una de las ecuaciones por grado. Si se aplica el término lineal, cuadrático o cúbico, úselo.

    Ejercicio\(\PageIndex{41}\)

    \(3y + 2x = 1\)

    Contestar

    lineal

    Ejercicio\(\PageIndex{42}\)

    \(4a^2 - 5a + 8 = 0\)

    Ejercicio\(\PageIndex{43}\)

    \(y - x - z + 4w = 21\)

    Contestar

    lineal

    Ejercicio\(\PageIndex{44}\)

    \(5x^2 + 2x^2 - 3x + 1 = 19\)

    Ejercicio\(\PageIndex{45}\)

    \((6x^3)^0 + 5x^2 = 7\)

    Contestar

    Cuadrático

    Combinación de polinomios usando suma y resta: productos binomiales especiales

    Simplifica las expresiones algebraicas para los siguientes problemas.

    Ejercicio\(\PageIndex{46}\)

    \(4a^2b + 8a^2b - a^2b\)

    Ejercicio\(\PageIndex{47}\)

    \(21x^2y^3 + 3xy + x^2y^3 + 6\)

    Contestar

    \(22x^2y^3 + 3xy + 6\)

    Ejercicio\(\PageIndex{48}\)

    \(7(x+1)+2x−6\)

    Ejercicio\(\PageIndex{49}\)

    \(2(3y^2+4y+4)+5y^2+3(10y+2)\)

    Contestar

    \(11y^2 + 38y + 14\)

    Ejercicio\(\PageIndex{50}\)

    \(5[3x + 7(2x^2 + 3x + 2) + 5] - 10x^2 + 4(3x^2 + x)\)

    Ejercicio\(\PageIndex{51}\)

    \(8{3[4y^3+y+2] + 6(y^3+2y^2)} - 24y^3 - 10y^2 - 3\)

    Contestar

    \(120y^3 + 86y^2 + 24y + 45\)

    Ejercicio\(\PageIndex{52}\)

    \(4a^2bc^3 + 5abc^3 + 9abc^3 + 7a^2bc^2\)

    Ejercicio\(\PageIndex{53}\)

    \(x(2x+5) + 3x^2 - 3x + 3\)

    Contestar

    \(5x^2 + 2x + 3\)

    Ejercicio\(\PageIndex{54}\)

    \(4k(3k^2 + 2k + 6) + k(5k^2 + k) + 16\)

    Ejercicio\(\PageIndex{55}\)

    \(2{5[6(b+2a+c^2)]}\)

    Contestar

    \(60c^2 + 120a + 60b\)

    Ejercicio\(\PageIndex{56}\)

    \(9x^2y(3xy + 4x) - 7x^3y^2 - 30x^3y + 5y(x^3y + 2x)\)

    Ejercicio\(\PageIndex{57}\)

    \(3m[5 + 2m(m+6m^2)] + m(m^2 + 4m + 1)\)

    Contestar

    \(36m^4 + 7m^3 + 4m^2 + 16m\)

    Ejercicio\(\PageIndex{58}\)

    \(2r[4(r + 5) - 2r - 10] + 6r(r + 2)\)

    Ejercicio\(\PageIndex{59}\)

    \(abc(3abc + c + b) + 6a(2bc + bc^2)\)

    Contestar

    \(3a^2b^2c^2 + 7abc^2 + ab^2c + 12abc\)

    Ejercicio\(\PageIndex{60}\)

    \(s^{10}(2s^5 + 3s^4 + 4s^3 + 5s^2 + 2s + 2) - s^{15} + 2s^{14} + 3s(s^{12} + 4s^{11}) - s^{10}\)

    Ejercicio\(\PageIndex{61}\)

    \(6a^4(a^2 + 5)\)

    Contestar

    \(6a^6 + 30a^4\)

    Ejercicio\(\PageIndex{62}\)

    \(2x^2y^4(3x^2y + 4xy + 3y)\)

    Ejercicio\(\PageIndex{63}\)

    \(5m^6(2m^7 + 3m^4 + m^2 + m + 1\)

    Contestar

    \(10m^{13} + 15m^{10} + 5m^8 + 5m^7 + 5m^6\)

    Ejercicio\(\PageIndex{64}\)

    \(a^3b^3c^4(4a + 2b + 3c + ab + ac + bc^2\)

    Ejercicio\(\PageIndex{65}\)

    \((x+2)(x+3)\)

    Contestar

    \(x^2 + 5x + 6\)

    Ejercicio\(\PageIndex{66}\)

    \((y+4)(y+5)\)

    Ejercicio\(\PageIndex{67}\)

    \((a+1)(a+3)\)

    Contestar

    \(a^2 + 4a + 3\)

    Ejercicio\(\PageIndex{68}\)

    \((3x+4)(2x+6)\)

    Ejercicio\(\PageIndex{69}\)

    \(4xy - 10xy\)

    Contestar

    \(-6xy\)

    Ejercicio\(\PageIndex{70}\)

    \(5ab^2 - 3(2ab^2 + 4)\)

    Ejercicio\(\PageIndex{71}\)

    \(7x^4 - 15x^4\)

    Contestar

    \(-8x^4\)

    Ejercicio\(\PageIndex{72}\)

    \(5x^2 + 2x - 3 - 7x^2 - 3x - 4 - 2x^2 - 11\)

    Ejercicio\(\PageIndex{73}\)

    \(4(x-8)\)

    Contestar

    \(4x-32\)

    Ejercicio\(\PageIndex{74}\)

    \(7x(x^2 - x + 3)\)

    Ejercicio\(\PageIndex{75}\)

    \(-3a(5a - 6)\)

    Contestar

    \(-15a^2 + 18a\)

    Ejercicio\(\PageIndex{76}\)

    \(4x^2y^2(2x-3y-5) - 16x^3y^2 - 3x^2y^3\)

    Ejercicio\(\PageIndex{77}\)

    \(-5y(y^2-3y-6) - 2y(3y^2+7) + (-2)(-5)\)

    Contestar

    \(-11y^3 + 15y^2 + 16y + 10\)

    Ejercicio\(\PageIndex{78}\)

    \(-[-(-4)]\)

    Ejercicio\(\PageIndex{79}\)

    \(−[−(−{−[−(5)]})]\)

    Contestar

    \(-5\)

    Ejercicio\(\PageIndex{80}\)

    \(x^2 + 3x - 4 - 4x^2 - 5x - 9 + 2x^2 - 6\)

    Ejercicio\(\PageIndex{81}\)

    \(4a^2b - 3b^2 - 5b^2 - 8q^2b - 10a^2b - b^2\)

    Contestar

    \(-6a^2b - 8q^2b - 9b^2\)

    Ejercicio\(\PageIndex{82}\)

    \(2x^2 - x - (3x^2 - 4x - 5)\)

    Ejercicio\(\PageIndex{83}\)

    \(3(a−1)−4(a+6)\)

    Contestar

    \(-a - 27\)

    Ejercicio\(\PageIndex{84}\)

    \(−6(a+2)−7(a−4)+6(a−1)\)

    Ejercicio\(\PageIndex{85}\)

    Agregar\(-3x + 4\) a\(5x - 8\).

    Contestar

    \(2x - 4\)

    Ejercicio\(\PageIndex{86}\)

    Agregar\(4(x^2 - 2x - 3)\) a\(-6(x^2 - 5)\).

    Ejercicio\(\PageIndex{87}\)

    Restar\(3\) tiempos\((2x-1)\) de\(8\) tiempos\((x-4)\)

    Contestar

    \(2x - 29\)

    Ejercicio\(\PageIndex{88}\)

    \((x+4)(x−6)\)

    Ejercicio\(\PageIndex{89}\)

    \((x−3)(x−8)\)

    Contestar

    \(x^2 - 11x + 24\)

    Ejercicio\(\PageIndex{90}\)

    \((2a−5)(5a−1)\)

    Ejercicio\(\PageIndex{91}\)

    \((8b+2c)(2b−c)\)

    Contestar

    \(16b^2 - 4bc - 2c^2\)

    Ejercicio\(\PageIndex{92}\)

    \((a-3)^2\)

    Ejercicio\(\PageIndex{93}\)

    \((3-a)^2\)

    Contestar

    \(a^2 - 6a + 9\)

    Ejercicio\(\PageIndex{94}\)

    \((x-y)^2\)

    Ejercicio\(\PageIndex{95}\)

    \((6x - 4)^2\)

    Contestar

    \(36x^2 - 48x + 16\)

    Ejercicio\(\PageIndex{96}\)

    \((3a-5b)^2\)

    Ejercicio\(\PageIndex{97}\)

    \((-x-y)^2\)

    Contestar

    \(x^2 + 2xy + y^2\)

    Ejercicio\(\PageIndex{98}\)

    \((k+6)(k−6)\)

    Ejercicio\(\PageIndex{99}\)

    \((m+1)(m−1)\)

    Contestar

    \(m^2 - 1\)

    Ejercicio\(\PageIndex{100}\)

    \((a−2)(a+2)\)

    Ejercicio\(\PageIndex{101}\)

    \((3c+10)(3c−10)\)

    Contestar

    \(9c^2 - 100\)

    Ejercicio\(\PageIndex{102}\)

    \((4a+3b)(4a−3b)\)

    Ejercicio\(\PageIndex{103}\)

    \((5+2b)(5−2b)\)

    Contestar

    \(25 - 4b^2\)

    Ejercicio\(\PageIndex{104}\)

    \((2y+5)(4y+5)\)

    Ejercicio\(\PageIndex{105}\)

    \((y+3a)(2y+a)\)

    Contestar

    \(2y^2 + 7ay + 3a^2\)

    Ejercicio\(\PageIndex{106}\)

    \((6+a)(6−3a)\)

    Ejercicio\(\PageIndex{107}\)

    \((x^2 + 2)(x^2 - 3)\)

    Contestar

    \(x^4 - x^2 - 6\)

    Ejercicio\(\PageIndex{108}\)

    \(6(a−3)(a+8)\)

    Ejercicio\(\PageIndex{109}\)

    \(8(2y−4)(3y+8)\)

    Contestar

    \(48y^2 + 32y - 256\)

    Ejercicio\(\PageIndex{110}\)

    \(x(x−7)(x+4)\)

    Ejercicio\(\PageIndex{111}\)

    \(m^2n(m+n)(m+2n)\)

    Contestar

    \(m^4n + 3m^3n^2 + 2m^2n^3\)

    Ejercicio\(\PageIndex{112}\)

    \((b+2)(b^2 - 2b + 3)\)

    Ejercicio\(\PageIndex{113}\)

    \(3p(p^2 + 5p + 4)(p^2 + 2p + 7)\)

    Contestar

    \(3p^5 + 21p^4 + 63p^3 + 129p^2 + 84p\)

    Ejercicio\(\PageIndex{114}\)

    \((a+6)^2\)

    Ejercicio\(\PageIndex{115}\)

    \((x-2)^2\)

    Contestar

    \(x^2 - 4x + 4\)

    Ejercicio\(\PageIndex{116}\)

    \((2x-3)^2\)

    Ejercicio\(\PageIndex{117}\)

    \((x^2 + y)^2\)

    Contestar

    \(x^4 + 2x^2y + y^2\)

    Ejercicio\(\PageIndex{118}\)

    \((2m - 5n)^2\)

    Ejercicio\(\PageIndex{119}\)

    \((3x^2y^3 - 4x^4y)^2\)

    Contestar

    \(9x^4y^6 - 24x^6y^4 + 16x^8y^2\)

    Ejercicio\(\PageIndex{120}\)

    \((a-2)^4\)

    Terminología asociada a ecuaciones

    Encuentra el dominio de las ecuaciones para los siguientes problemas.

    Ejercicio\(\PageIndex{121}\)

    \(y = 8x + 7\)

    Contestar

    todos los números reales

    Ejercicio\(\PageIndex{122}\)

    \(y = 5x^2 - 2x + 6\)

    Ejercicio\(\PageIndex{123}\)

    \(y = \dfrac{4}{x-2}\)

    Contestar

    todos los números reales excepto 2

    Ejercicio\(\PageIndex{124}\)

    \(m = \dfrac{-2x}{h}\)

    Ejercicio\(\PageIndex{125}\)

    \(z = \dfrac{4x+5}{y+10}\)

    Contestar

    \(x\)puede ser igual a cualquier número real;\(y\) puede ser igual a cualquier número excepto\(-10\)


    This page titled 4.10: Suplemento de ejercicio is shared under a CC BY license and was authored, remixed, and/or curated by Denny Burzynski & Wade Ellis, Jr. (OpenStax CNX) .