Saltar al contenido principal

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

En nuestro trabajo con la simplificación de expresiones de raíz cuadrada, señalamos que

$\sqrt{\dfrac{x}{y}} = \dfrac{\sqrt{x}}{\sqrt{y}} \nonumber$

Como esta es una ecuación, podemos escribirla como:

$\dfrac{\sqrt{x}}{\sqrt{y}} = \sqrt{\dfrac{x}{y}} \nonumber$

##### La propiedad de la división:$$\dfrac{\sqrt{x}}{\sqrt{y}} = \sqrt{\dfrac{x}{y}}$$

$\dfrac{\sqrt{x}}{\sqrt{y}} = \sqrt{\dfrac{x}{y}}$

Como podemos ver al observar el lado derecho de la ecuación que rige la división de raíces cuadradas, el proceso puede producir una fracción en el radicando. Esto significa, por supuesto, que la expresión de raíz cuadrada no está en forma simplificada. A veces es más útil racionalizar el denominador de una expresión de raíz cuadrada antes de realizar realmente la división.

### Conjunto de Muestras A

##### Ejemplo$$\PageIndex{1}$$

$\sqrt{\dfrac{3}{7}} \nonumber$

$\sqrt{\dfrac{3}{7}} = \dfrac{\sqrt{3}}{\sqrt{7}} = \dfrac{\sqrt{3}}{\sqrt{7}} \cdot \dfrac{\sqrt{7}}{\sqrt{7}} = \dfrac{\sqrt{3} \sqrt{7}}{7} = \dfrac{\sqrt{21}}{7} \nonumber$

##### Ejemplo$$\PageIndex{2}$$

$$\dfrac{\sqrt{5}}{\sqrt{3}}$$

Una aplicación directa de la regla produce$$\sqrt{\dfrac{5}{3}}$$, la cual debe simplificarse. Racionalicemos el denominador antes de realizar la división.

$$\dfrac{\sqrt{5}}{\sqrt{3}}=\dfrac{\sqrt{5}}{\sqrt{3}} \cdot \dfrac{\sqrt{3}}{\sqrt{3}}=\dfrac{\sqrt{5} \sqrt{3}}{3}=\dfrac{\sqrt{15}}{3}$$

##### Ejemplo$$\PageIndex{3}$$

$$\dfrac{\sqrt{21}}{\sqrt{7}} = \sqrt{\dfrac{21}{7}} = \sqrt{3}$$

La regla produce el cociente rápidamente. También podríamos racionalizar primero el denominador y producir el mismo resultado.

$$\dfrac{\sqrt{21}}{\sqrt{7}}=\dfrac{\sqrt{21}}{7} \cdot \dfrac{\sqrt{7}}{\sqrt{7}}=\dfrac{\sqrt{21 \cdot 7}}{7}=\dfrac{\sqrt{3 \cdot 7 \cdot 7}}{7}=\dfrac{\sqrt{3 \cdot 7^{2}}}{7}=\dfrac{7 \sqrt{3}}{7}=\sqrt{3}$$

##### Ejemplo$$\PageIndex{4}$$

$$\dfrac{\sqrt{80 x^{9}}}{\sqrt{5 x^{4}}}=\sqrt{\dfrac{80 x^{9}}{5 x^{4}}}=\sqrt{16 x^{5}}=\sqrt{16} \sqrt{x^{4} x}=4 x^{2} \sqrt{x}$$

##### Ejemplo$$\PageIndex{5}$$

$$\dfrac{\sqrt{50 a^{3} b^{7}}}{\sqrt{5 a b^{5}}}=\sqrt{\dfrac{50 a^{3} b^{7}}{5 a b^{5}}}=\sqrt{10 a^{2} b^{2}}=a b \sqrt{10}$$

##### Ejemplo$$\PageIndex{6}$$

$$\dfrac{\sqrt{5a}}{\sqrt{b}}$$

Alguna observación muestra que una división directa de los radicandos producirá una fracción. Esto sugiere que primero racionalizamos el denominador.

$$\dfrac{\sqrt{5a}}{\sqrt{b}} = \dfrac{\sqrt{5a}}{\sqrt{b}} \cdot \dfrac{\sqrt{b}}{\sqrt{b}} = \dfrac{\sqrt{5a} \sqrt{b}}{b} = \dfrac{\sqrt{5ab}}{b}$$

##### Ejemplo$$\PageIndex{7}$$

$$\dfrac{\sqrt{m-6}}{\sqrt{m+2}} = \dfrac{\sqrt{m-6}}{\sqrt{m+2}} \cdot \dfrac{\sqrt{m+2}}{\sqrt{m+2}} = \dfrac{\sqrt{m^2 - 4m - 12}}{m + 2}$$

##### Ejemplo$$\PageIndex{8}$$

$$\dfrac{\sqrt{y^{2}-y-12}}{\sqrt{y+3}}=\sqrt{\dfrac{y^{2}-y-12}{y+3}}=\sqrt{\dfrac{(y+3)(y-4)}{(y+3)}}=\sqrt{\dfrac{\cancel{(y+3)}(y-4)}{\cancel{(y+3)}}}=\sqrt{y-4}$$

### Conjunto de práctica A

##### Problema de práctica$$\PageIndex{1}$$

$$\dfrac{\sqrt{26}}{\sqrt{13}}$$

Contestar

$$\sqrt{2}$$

##### Problema de práctica$$\PageIndex{2}$$

$$\dfrac{\sqrt{7}}{\sqrt{3}}$$

Contestar

$$\dfrac{\sqrt{21}}{3}$$

##### Problema de práctica$$\PageIndex{3}$$

$$\dfrac{\sqrt{80m^5n^8}}{\sqrt{5m^2n}}$$

Contestar

$$4mn^3 \sqrt{mn}$$

##### Problema de práctica$$\PageIndex{4}$$

$$\dfrac{\sqrt{196(x+7)^8}}{\sqrt{2(x+7)^3}}$$

Contestar

$$7(x+7)^2 \sqrt{2(x+7)}$$

##### Problema de práctica$$\PageIndex{5}$$

$$\dfrac{\sqrt{n+4}}{\sqrt{n-5}}$$

Contestar

$$\dfrac{\sqrt{n^2 - n - 20}}{n-5}$$

##### Problema de práctica$$\PageIndex{6}$$

$$\dfrac{\sqrt{a^2 - 6a + 8}}{\sqrt{a-2}}$$

Contestar

$$\sqrt{a-4}$$

##### Problema de práctica$$\PageIndex{7}$$

$$\dfrac{\sqrt{x^{2n}}}{\sqrt{x^n}}$$

Contestar

$$x^n$$

##### Problema de práctica$$\PageIndex{8}$$

$$\dfrac{\sqrt{a^{3m-5}}}{\sqrt{a^{m-1}}}$$

Contestar

$$a^{m-2}$$

Para realizar una división que contenga un binomio en el denominador, tal como$$\dfrac{3}{4 + \sqrt{6}}$$, multiplicamos el numerador y el denominador por un conjugado del denominador.

Un conjugado del binomio$$a + b$$ es$$a-b$$. De igual manera, un conjugado de$$a-b$$ es$$a + b$$.

Observe que cuando los conjugados$$a + b$$ y$$a - b$$ se multiplican juntos, producen una diferencia de dos cuadrados.

$$(a+b)(a-b) = a^2 - ab + ab - b^2 = a^2 - b^2$$

Este principio nos ayuda a eliminar los radicales de raíz cuadrada, como se muestra en estos ejemplos que ilustran el producto de los conjugados.

##### Ejemplo$$\PageIndex{9}$$

(5 +\ sqrt {2}) (5 -\ sqrt {2}) &= 5^2 - (\ sqrt {2}) ^2\\
&= 25 - 2\\
&= 23
\ end {array}\)

##### Ejemplo$$\PageIndex{10}$$

\ (\ begin {array} {ras a la izquierda}
(\ sqrt {6} -\ sqrt {7}) (\ sqrt {6} +\ sqrt {7}) &= (\ sqrt {6}) ^2 - (\ sqrt {7}) ^2\\
&= 6 - 7\
&= -1
\ end {array}\)

## Conjunto de Muestras B

Simplifica las siguientes expresiones.

##### Ejemplo$$\PageIndex{11}$$

$$\dfrac{3}{4 + \sqrt{6}}$$

El conjugado del denominador es$$4 - \sqrt{6}$$. Multiplicar la fracción por$$1$$ en forma de$$\dfrac{4 - \sqrt{6}}{4 - \sqrt{6}}$$

\ (\ begin {array} {ras a la izquierda}
\ dfrac {3} {4 +\ sqrt {6}}\ cdot\ dfrac {4 -\ sqrt {6}} {4 -\ sqrt {6}} &=\ dfrac {3 (4 -\ sqrt {6})} {4^2 - (\ sqrt {6}) ^2}\
&=\ dfrac {12 - 3\ sqrt {6}} {16 - 6}\\
&=\ dfrac {12 - 3\ sqrt {6}} {10}
\ end {array}\)

##### Ejemplo$$\PageIndex{12}$$

$$\dfrac{\sqrt{2x}}{\sqrt{3} - \sqrt{5x}}$$

El conjugado del denominador es$$\sqrt{3} + \sqrt{5x}$$. Multiplique la fracción por$$1$$ en forma de$$\dfrac{\sqrt{3} + \sqrt{5x}}{\sqrt{3} + \sqrt{5x}}$$.

\ (\ begin {array} {ras izquierda}
\ dfrac {\ sqrt {2 x}} {\ sqrt {3} -\ sqrt {5 x}}\ cdot\ dfrac {\ sqrt {3} +\ sqrt {5 x}} {\ sqrt {3} +\ sqrt {5 x}} &=\ dfrac {\ sqrt {2 x} (\ sqrt {3} +\ sqrt {5 x})} {(\ sqrt {3}) ^ {2} - (\ sqrt {5 x}) ^ {2}}\\
&=\ dfrac {\ sqrt {2 x}\ sqrt {3} +\ sqrt {2 x}\ sqrt {5 x}} {3-5 x}\
&=\ dfrac {\ sqrt {6 x} +\ sqrt {10 x^ {2}}} {3-5 x}\\
&=\ dfrac {\ sqrt {6 x} +x\ sqrt {10}} {3-5 x}
\ end {array}\)

## Set de práctica B

Simplifica las siguientes expresiones.

##### Problema de práctica$$\PageIndex{9}$$

$$\dfrac{5}{9 + \sqrt{7}}$$

Contestar

$$\dfrac{45 - 5\sqrt{7}}{74}$$

##### Problema de práctica$$\PageIndex{10}$$

$$\dfrac{-2}{1 - \sqrt{3x}}$$

Contestar

$$\dfrac{-2 - 2\sqrt{3x}}{1 - 3x}$$

##### Problema de práctica$$\PageIndex{11}$$

$$\dfrac{\sqrt{8}}{\sqrt{3x} + \sqrt{2x}}$$

Contestar

$$\dfrac{2\sqrt{6x} - 4\sqrt{x}}{x}$$

##### Problema de práctica$$\PageIndex{12}$$

$$\dfrac{\sqrt{2m}}{m - \sqrt{3m}}$$

Contestar

$$\dfrac{\sqrt{2m} + \sqrt{6}}{m - 3}$$

## Ejercicios

Para los siguientes problemas, simplifique cada expresión.

##### Ejercicio$$\PageIndex{1}$$

$$\dfrac{\sqrt{28}}{\sqrt{2}}$$

Contestar

$$\sqrt{14}$$

##### Ejercicio$$\PageIndex{2}$$

$$\dfrac{\sqrt{200}}{\sqrt{10}}$$

##### Ejercicio$$\PageIndex{3}$$

$$\dfrac{\sqrt{28}}{\sqrt{7}}$$

Contestar

$$2$$

##### Ejercicio$$\PageIndex{4}$$

$$\dfrac{\sqrt{96}}{\sqrt{24}}$$

##### Ejercicio$$\PageIndex{5}$$

$$\dfrac{\sqrt{180}}{\sqrt{5}}$$

Contestar

$$6$$

##### Ejercicio$$\PageIndex{6}$$

$$\dfrac{\sqrt{336}}{\sqrt{21}}$$

##### Ejercicio$$\PageIndex{7}$$

$$\dfrac{\sqrt{162}}{\sqrt{18}}$$

Contestar

$$3$$

##### Ejercicio$$\PageIndex{8}$$

$$\sqrt{\dfrac{25}{9}}$$

##### Ejercicio$$\PageIndex{9}$$

$$\sqrt{\dfrac{36}{35}}$$

Contestar

$$\dfrac{6\sqrt{35}}{35}$$

##### Ejercicio$$\PageIndex{10}$$

$$\sqrt{\dfrac{225}{16}}$$

##### Ejercicio$$\PageIndex{11}$$

$$\sqrt{\dfrac{49}{225}}$$

Contestar

$$\dfrac{7}{15}$$

##### Ejercicio$$\PageIndex{12}$$

$$\sqrt{\dfrac{3}{5}}$$

##### Ejercicio$$\PageIndex{13}$$

$$\sqrt{\dfrac{3}{7}}$$

Contestar

$$\dfrac{\sqrt{21}}{7}$$

##### Ejercicio$$\PageIndex{14}$$

$$\sqrt{\dfrac{1}{2}}$$

##### Ejercicio$$\PageIndex{15}$$

$$\sqrt{\dfrac{5}{2}}$$

Contestar

$$\dfrac{\sqrt{10}}{2}$$

##### Ejercicio$$\PageIndex{16}$$

$$\sqrt{\dfrac{11}{25}}$$

##### Ejercicio$$\PageIndex{17}$$

$$\sqrt{\dfrac{15}{36}}$$

Contestar

$$\dfrac{\sqrt{15}}{6}$$

##### Ejercicio$$\PageIndex{18}$$

$$\sqrt{\dfrac{5}{16}}$$

##### Ejercicio$$\PageIndex{19}$$

$$\sqrt{\dfrac{7}{25}}$$

Contestar

$$\dfrac{\sqrt{7}}{5}$$

##### Ejercicio$$\PageIndex{20}$$

$$\sqrt{\dfrac{32}{49}}$$

##### Ejercicio$$\PageIndex{21}$$

$$\sqrt{\dfrac{50}{81}}$$

Contestar

$$\dfrac{5 \sqrt{2}}{9}$$

##### Ejercicio$$\PageIndex{22}$$

$$\dfrac{\sqrt{125x^5}}{\sqrt{5x^3}}$$

##### Ejercicio$$\PageIndex{23}$$

$$\dfrac{\sqrt{72m^7}}{\sqrt{2m^3}}$$

Contestar

$$6m^2$$

##### Ejercicio$$\PageIndex{24}$$

$$\dfrac{\sqrt{162a^{11}}}{\sqrt{2a^5}}$$

##### Ejercicio$$\PageIndex{25}$$

$$\dfrac{\sqrt{75y^{10}}}{\sqrt{2a^5}}$$

Contestar

$$5y^3$$

##### Ejercicio$$\PageIndex{26}$$

$$\dfrac{\sqrt{48x^9}}{\sqrt{3x^2}}$$

##### Ejercicio$$\PageIndex{27}$$

$$\dfrac{\sqrt{125a^{14}}}{\sqrt{5a^5}}$$

Contestar

$$5a^4 \sqrt{a}$$

##### Ejercicio$$\PageIndex{28}$$

$$\dfrac{\sqrt{27a^{10}}}{\sqrt{3a^5}}$$

##### Ejercicio$$\PageIndex{29}$$

$$\dfrac{\sqrt{108x^{21}}}{\sqrt{3x^4}}$$

Contestar

$$6x^8 \sqrt{x}$$

##### Ejercicio$$\PageIndex{30}$$

$$\dfrac{\sqrt{48x^6y^7}}{\sqrt{3xy}}$$

##### Ejercicio$$\PageIndex{31}$$

$$\dfrac{\sqrt{45a^3b^8c^2}}{\sqrt{5ab^2c}}$$

Contestar

$$3ab^3 \sqrt{c}$$

##### Ejercicio$$\PageIndex{32}$$

$$\dfrac{\sqrt{66m^{12}n^{15}}}{\sqrt{11mn^8}}$$

##### Ejercicio$$\PageIndex{33}$$

$$\dfrac{\sqrt{30p^5q^{14}}}{\sqrt{5q^7}}$$

Contestar

$$p^2q^3 \sqrt{6pq}$$

##### Ejercicio$$\PageIndex{34}$$

$$\dfrac{\sqrt{b}}{\sqrt{5}}$$

##### Ejercicio$$\PageIndex{35}$$

$$\dfrac{\sqrt{5x}}{\sqrt{2}}$$

Contestar

$$\dfrac{\sqrt{10x}}{2}$$

##### Ejercicio$$\PageIndex{36}$$

$$\dfrac{\sqrt{2a^3b}}{\sqrt{14a}}$$

##### Ejercicio$$\PageIndex{37}$$

$$\dfrac{\sqrt{3m^4n^3}}{\sqrt{6mn^5}}$$

Contestar

$$\dfrac{m \sqrt{2m}}{2n}$$

##### Ejercicio$$\PageIndex{38}$$

$$\dfrac{\sqrt{5(p-q)^6(r+s)^4}}{\sqrt{25(r+s)^3}}$$

##### Ejercicio$$\PageIndex{39}$$

$$\dfrac{\sqrt{m(m-6)-m^2 + 6m}}{\sqrt{3m - 7}}$$

Contestar

$$0$$

##### Ejercicio$$\PageIndex{40}$$

$$\dfrac{\sqrt{r+1}}{\sqrt{r-1}}$$

##### Ejercicio$$\PageIndex{41}$$

$$\dfrac{\sqrt{s+3}}{\sqrt{s-3}}$$

Contestar

$$\dfrac{\sqrt{s^2-9}}{s-3}$$

##### Ejercicio$$\PageIndex{42}$$

$$\dfrac{\sqrt{a^2 + 3a + 2}}{\sqrt{a + 1}}$$

##### Ejercicio$$\PageIndex{43}$$

$$\dfrac{\sqrt{x^2 - 10x + 24}}{\sqrt{x-4}}$$

Contestar

$$\sqrt{x-6}$$

##### Ejercicio$$\PageIndex{44}$$

$$\dfrac{\sqrt{x^2 - 2x - 8}}{\sqrt{x + 2}}$$

##### Ejercicio$$\PageIndex{45}$$

$$\dfrac{\sqrt{x^2 - 4x + 3}}{\sqrt{x-3}}$$

Contestar

$$\sqrt{x-1}$$

##### Ejercicio$$\PageIndex{46}$$

$$\dfrac{\sqrt{2x^2 - x - 1}}{\sqrt{x - 1}}$$

##### Ejercicio$$\PageIndex{47}$$

$$\dfrac{-5}{4 + \sqrt{5}}$$

Contestar

$$\dfrac{-20 + 5\sqrt{5}}{11}$$

##### Ejercicio$$\PageIndex{48}$$

$$\dfrac{1}{1 + \sqrt{x}}$$

##### Ejercicio$$\PageIndex{49}$$

$$\dfrac{2}{1 - \sqrt{a}}$$

Contestar

$$\dfrac{2(1 + \sqrt{a})}{1 - a}$$

##### Ejercicio$$\PageIndex{50}$$

$$\dfrac{-6}{\sqrt{5} - 1}$$

##### Ejercicio$$\PageIndex{51}$$

$$\dfrac{-6}{\sqrt{7} + 2}$$

Contestar

$$-2(\sqrt{7} - 2)$$

##### Ejercicio$$\PageIndex{52}$$

$$\dfrac{3}{\sqrt{3} - \sqrt{2}}$$

##### Ejercicio$$\PageIndex{53}$$

$$\dfrac{4}{\sqrt{6} + \sqrt{2}}$$

Contestar

$$\sqrt{6} - \sqrt{2}$$

##### Ejercicio$$\PageIndex{54}$$

$$\dfrac{\sqrt{5}}{\sqrt{8} - \sqrt{6}}$$

##### Ejercicio$$\PageIndex{55}$$

$$\dfrac{\sqrt{12}}{\sqrt{12} - \sqrt{8}}$$

Contestar

$$3 + \sqrt{6}$$

##### Ejercicio$$\PageIndex{56}$$

$$\dfrac{\sqrt{7x}}{2 - \sqrt{5x}}$$

##### Ejercicio$$\PageIndex{57}$$

$$\dfrac{\sqrt{6y}}{1 + \sqrt{3y}}$$

Contestar

$$\dfrac{\sqrt{6y} - 3y\sqrt{2}}{1 - 3y}$$

##### Ejercicio$$\PageIndex{58}$$

$$\dfrac{\sqrt{2}}{\sqrt{3} - \sqrt{2}}$$

##### Ejercicio$$\PageIndex{59}$$

$$\dfrac{\sqrt{a}}{\sqrt{a} + \sqrt{b}}$$

Contestar

$$\dfrac{a - \sqrt{ab}}{a - b}$$

##### Ejercicio$$\PageIndex{60}$$

$$\dfrac{\sqrt{8^3b^5}}{4 - \sqrt{2ab}}$$

##### Ejercicio$$\PageIndex{61}$$

$$\dfrac{\sqrt{7x}}{\sqrt{5x} + \sqrt{x}}$$

Contestar

$$\dfrac{\sqrt{35} - \sqrt{7}}{4}$$

##### Ejercicio$$\PageIndex{62}$$

$$\dfrac{\sqrt{3y}}{\sqrt{2y} - \sqrt{y}}$$

## Ejercicios para la revisión

##### Ejercicio$$\PageIndex{63}$$

Simplificar$$x^8y^7 \dfrac{x^4y^8}{x^3y^4}$$

Contestar

$$x^9y^{11}$$

##### Ejercicio$$\PageIndex{64}$$

Resolver la desigualdad compuesta$$-8 \le 7 - 5x \le -23$$

##### Ejercicio$$\PageIndex{65}$$

Construye la gráfica de$$y = \dfrac{2}{3}x - 4$$

Contestar

##### Ejercicio$$\PageIndex{66}$$

El símbolo$$\sqrt{x}$$ representa qué raíz cuadrada del número$$x, x \ge 0$$?

##### Ejercicio$$\PageIndex{67}$$

Simplificar$$\sqrt{a^2 + 8a + 16}$$

Contestar

$$a + 4$$