2.4E: Ejercicios
- Page ID
- 110236
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)La práctica hace la perfección
Resolver ecuaciones usando la estrategia general para resolver ecuaciones lineales
En los siguientes ejercicios, resuelve cada ecuación lineal.
\(15(y-9)=-60\)
\(21(y-5)=-42\)
- Responder
-
\(y=3\)
\(-9(2 n+1)=36\)
\(-16(3 n+4)=32\)
- Responder
-
\(n=-2\)
\(8(22+11 r)=0\)
\(5(8+6 p)=0\)
- Responder
-
\(p=-\frac{4}{3}\)
\(-(w-12)=30\)
\(-(t-19)=28\)
- Responder
-
\(t=-9\)
\(9(6 a+8)+9=81\)
\(8(9 b-4)-12=100\)
- Responder
-
\(b=2\)
\(32+3(z+4)=41\)
\(21+2(m-4)=25\)
- Responder
-
\(m=6\)
\(51+5(4-q)=56\)
\(-6+6(5-k)=15\)
- Responder
-
\(k=\frac{3}{2}\)
\(2(9 s-6)-62=16\)
\(8(6 t-5)-35=-27\)
- Responder
-
\(t=1\)
\(3(10-2 x)+54=0\)
\(-2(11-7 x)+54=4\)
- Responder
-
\(x=-2\)
\(\frac{2}{3}(9 c-3)=22\)
\(\frac{3}{5}(10 x-5)=27\)
- Responder
-
\(x=5\)
\(\frac{1}{5}(15 c+10)=c+7\)
\(\frac{1}{4}(20 d+12)=d+7\)
- Responder
-
\(d=1\)
\(18-(9 r+7)=-16\)
\(15-(3 r+8)=28\)
- Contestar
-
\(r=-7\)
\(5-(n-1)=19\)
\(-3-(m-1)=13\)
- Contestar
-
\(m=-15\)
\(11-4(y-8)=43\)
\(18-2(y-3)=32\)
- Contestar
-
\(y=-4\)
\(24-8(3 v+6)=0\)
\(35-5(2 w+8)=-10\)
- Contestar
-
\(w=\frac{1}{2}\)
\(4(a-12)=3(a+5)\)
\(-2(a-6)=4(a-3)\)
- Contestar
-
\(a=4\)
\(2(5-u)=-3(2 u+6)\)
\(5(8-r)=-2(2 r-16)\)
- Contestar
-
\(r=8\)
\(3(4 n-1)-2=8 n+3\)
\(9(2 m-3)-8=4 m+7\)
- Contestar
-
\(m=3\)
\(12+2(5-3 y)=-9(y-1)-2\)
\(-15+4(2-5 y)=-7(y-4)+4\)
- Contestar
-
\(y=-3\)
\(8(x-4)-7 x=14\)
\(5(x-4)-4 x=14\)
- Contestar
-
\(x=34\)
\(5+6(3 s-5)=-3+2(8 s-1)\)
\(-12+8(x-5)=-4+3(5 x-2)\)
- Contestar
-
\(x=-6\)
\(4(u-1)-8=6(3 u-2)-7\)
\(7(2 n-5)=8(4 n-1)-9\)
- Contestar
-
\(n=-1\)
\(4(p-4)-(p+7)=5(p-3)\)
\(3(a-2)-(a+6)=4(a-1)\)
- Contestar
-
\(a=-4\)
\(\begin{array}{l}{-(9 y+5)-(3 y-7)} \\ {=16-(4 y-2)}\end{array}\)
\(\begin{array}{l}{-(7 m+4)-(2 m-5)} \\ {=14-(5 m-3)}\end{array}\)
- Contestar
-
\(m=-4\)
\(\begin{array}{l}{4[5-8(4 c-3)]} \\ {=12(1-13 c)-8}\end{array}\)
\(\begin{array}{l}{5[9-2(6 d-1)]} \\ {=11(4-10 d)-139}\end{array}\)
- Contestar
-
\(d=-3\)
\(\begin{array}{l}{3[-9+8(4 h-3)]} \\ {=2(5-12 h)-19}\end{array}\)
\(\begin{array}{l}{3[-14+2(15 k-6)]} \\ {=8(3-5 k)-24}\end{array}\)
- Contestar
-
\(k=\frac{3}{5}\)
\(\begin{array}{l}{5[2(m+4)+8(m-7)]} \\ {=2[3(5+m)-(21-3 m)]}\end{array}\)
\(\begin{array}{l}{10[5(n+1)+4(n-1)]} \\ {=11[7(5+n)-(25-3 n)]}\end{array}\)
- Contestar
-
\(n=-5\)
\(5(1.2 u-4.8)=-12\)
\(4(2.5 v-0.6)=7.6\)
- Contestar
-
\(v=1\)
\(0.25(q-6)=0.1(q+18)\)
\(0.2(p-6)=0.4(p+14)\)
- Contestar
-
\(p=-34\)
\(0.2(30 n+50)=28\)
\(0.5(16 m+34)=-15\)
- Contestar
-
\(m=-4\)
Clasificar ecuaciones
En los siguientes ejercicios, clasifique cada ecuación como una ecuación condicional, una identidad o una contradicción y luego exponer la solución.
\(23 z+19=3(5 z-9)+8 z+46\)
\(15 y+32=2(10 y-7)-5 y+46\)
- Contestar
-
identidad; todos los números reales
\(5(b-9)+4(3 b+9)=6(4 b-5)-7 b+21\)
\(9(a-4)+3(2 a+5)=7(3 a-4)-6 a+7\)
- Contestar
-
identidad; todos los números reales
\(18(5 j-1)+29=47\)
\(24(3 d-4)+100=52\)
- Contestar
-
ecuación condicional;\(d=\frac{2}{3}\)
\(22(3 m-4)=8(2 m+9)\)
\(30(2 n-1)=5(10 n+8)\)
- Contestar
-
ecuación condicional;\(n=7\)
\(7 v+42=11(3 v+8)-2(13 v-1)\)
\(18 u-51=9(4 u+5)-6(3 u-10)\)
- Contestar
-
contradicción; no hay solución
\(3(6 q-9)+7(q+4)=5(6 q+8)-5(q+1)\)
\(5(p+4)+8(2 p-1)=9(3 p-5)-6(p-2)\)
- Contestar
-
contradicción; no hay solución
\(12(6 h-1)=8(8 h+5)-4\)
\(9(4 k-7)=11(3 k+1)+4\)
- Contestar
-
ecuación condicional;\(k=26\)
\(45(3 y-2)=9(15 y-6)\)
\(60(2 x-1)=15(8 x+5)\)
- Contestar
-
contradicción; no hay solución
\(16(6 n+15)=48(2 n+5)\)
\(36(4 m+5)=12(12 m+15)\)
- Contestar
-
identidad; todos los números reales
\(9(14 d+9)+4 d=13(10 d+6)+3\)
\(11(8 c+5)-8 c=2(40 c+25)+5\)
- Contestar
-
identidad; todos los números reales
Matemáticas cotidianas
Esgrima Micah tiene 44 pies de esgrima para hacer correr a un perro en su patio. Quiere que el largo sea 2.5 pies más que el ancho. Encuentra la longitud, L, resolviendo la ecuación 2L+2 (L−2.5) =44.
Monedas que Rhonda tiene\(\$ 1.90\) en monedas de cinco y diez centavos. El número de monedas de diez centavos es uno menos del doble del número de monedas de cinco centavos. Encuentra el
número de monedas de cinco centavos,\(n,\) resolviendo la ecuación\(0.05 n+0.10(2 n-1)=1.90 .\)
- Contestar
-
8 níqueles
Ejercicios de escritura
Usando sus propias palabras, enumere los pasos en la estrategia general para resolver ecuaciones lineales.
Explique por qué debe simplificar ambos lados de una ecuación tanto como sea posible antes de recopilar los términos variables a un lado y los términos constantes al otro lado.
- Contestar
-
Las respuestas variarán.
¿Cuál es el primer paso que das al resolver la ecuación\(3-7(y-4)=38 ?\) ¿Por qué es este tu primer paso?
Resuelve la ecuación\(\frac{1}{4}(8 x+20)=3 x-4\) explicando todos los pasos de tu solución como en los ejemplos de esta sección.
- Contestar
-
Las respuestas variarán.
Autocomprobación
ⓐ Después de completar los ejercicios, usa esta lista de verificación para evaluar tu dominio del objetivo de esta sección.
ⓑ En una escala del 1-10, ¿cómo calificaría su dominio de esta sección a la luz de sus respuestas en la lista de verificación? ¿Cómo se puede mejorar esto?
Glosario
- ecuación condicional
- Una ecuación que es verdadera para uno o más valores de la variable y falsa para todos los demás valores de la variable es una ecuación condicional.
- contradicción
- Una ecuación que es falsa para todos los valores de la variable se llama contradicción. Una contradicción no tiene solución.
- identidad
- Una ecuación que es verdadera para cualquier valor de la variable se llama identidad. La solución de una identidad son todos los números reales.