2.7.1: Ejercicios 2.7
- Page ID
- 116389
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)En Ejercicios\(\PageIndex{1}\) -\(\PageIndex{4}\),\(B\) se dan matrices\(A\) y. Cómputos\((AB)^{-1}\) y\(B^{-1}A^{-1}\).
\(A=\left[\begin{array}{cc}{1}&{2}\\{1}&{1}\end{array}\right],\quad B=\left[\begin{array}{cc}{3}&{5}\\{2}&{5}\end{array}\right]\)
- Contestar
-
\((AB)^{-1}=\left[\begin{array}{cc}{-2}&{3}\\{1}&{-1.4}\end{array}\right]\)
\(A=\left[\begin{array}{cc}{1}&{2}\\{3}&{4}\end{array}\right],\quad B=\left[\begin{array}{cc}{7}&{1}\\{2}&{1}\end{array}\right]\)
- Contestar
-
\((AB)^{-1}=\left[\begin{array}{cc}{-7/10}&{3/10}\\{29/10}&{-11/10}\end{array}\right]\)
\(A=\left[\begin{array}{cc}{2}&{5}\\{3}&{8}\end{array}\right],\quad B=\left[\begin{array}{cc}{1}&{-1}\\{1}&{4}\end{array}\right]\)
- Contestar
-
\((AB)^{-1}=\left[\begin{array}{cc}{29/5}&{-18/5}\\{-11/5}&{7/5}\end{array}\right]\)
\(A=\left[\begin{array}{cc}{2}&{4}\\{2}&{5}\end{array}\right],\quad B=\left[\begin{array}{cc}{2}&{2}\\{6}&{5}\end{array}\right]\)
- Contestar
-
\((AB)^{-1}=\left[\begin{array}{cc}{-29/4}&{6}\\{17/2}&{-7}\end{array}\right]\)
En Ejercicios\(\PageIndex{5}\) -\(\PageIndex{8}\),\(A\) se da una\(2\times 2\) matriz. Calcular\(A^{-1}\) y\((A^{-1})^{-1}\) usar el Teorema 2.6.3.
\(A=\left[\begin{array}{cc}{-3}&{5}\\{1}&{-2}\end{array}\right]\)
- Contestar
-
\(A^{-1}=\left[\begin{array}{cc}{-2}&{-5}\\{-1}&{-3}\end{array}\right],\quad (A^{-1})^{-1}=\left[\begin{array}{cc}{-3}&{5}\\{1}&{-2}\end{array}\right]\)
\(A=\left[\begin{array}{cc}{3}&{5}\\{2}&{4}\end{array}\right]\)
- Contestar
-
\(A^{-1}=\left[\begin{array}{cc}{2}&{-5/2}\\{-1}&{3/2}\end{array}\right],\quad (A^{-1})^{-1}=\left[\begin{array}{cc}{3}&{5}\\{2}&{4}\end{array}\right]\)
\(A=\left[\begin{array}{cc}{2}&{7}\\{1}&{3}\end{array}\right]\)
- Contestar
-
\(A^{-1}=\left[\begin{array}{cc}{-3}&{7}\\{1}&{-2}\end{array}\right],\quad (A^{-1})^{-1}=\left[\begin{array}{cc}{2}&{7}\\{1}&{3}\end{array}\right]\)
\(A=\left[\begin{array}{cc}{9}&{0}\\{7}&{9}\end{array}\right]\)
- Contestar
-
\(A^{-1}=\left[\begin{array}{cc}{1/9}&{0}\\{-7/81}&{1/9}\end{array}\right],\quad (A^{-1})^{-1}=\left[\begin{array}{cc}{9}&{0}\\{7}&{9}\end{array}\right]\)
Encuentra\(2\times 2\) matrices\(A\) y\(B\) que son cada una invertible, pero no lo\(A + B\) es.
- Contestar
-
Las soluciones variarán.
Cree una\(6\times 6\) matriz aleatoria\(A\), luego tenga una calculadora o cómputos por computadora\(AA^{−1}\). ¿Se devolvió exactamente la matriz de identidad? Comenta tus resultados.
- Contestar
-
Probablemente algunas entradas que deberían ser 0 no serán exactamente 0, sino valores muy pequeños
Use una calculadora o computadora para calcular\(AA^{-1}\), donde
\[A=\left[\begin{array}{cccc}{1}&{2}&{3}&{4}\\{1}&{4}&{9}&{16}\\{1}&{8}&{27}&{64}\\{1}&{16}&{81}&{256}\end{array}\right]. \nonumber \]
Fue la matriz de identidad devuelta exactamente. Comenta tus resultados.
- Contestar
-
Probablemente algunas entradas que deberían ser 0 no serán exactamente 0, sino valores muy pequeños.