Saltar al contenido principal
LibreTexts Español

1.5: Pruebas de Dirichlet

  • Page ID
    109190
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    La prueba de Weierstrass es útil e importante, pero tiene una deficiencia básica: se aplica solo a integrales inadecuadas convergentes absolutamente uniformes. El siguiente teorema se aplica en algunos casos donde\(\int_{a}^{b}f(x,y)\,dx\) converge uniformemente sobre\(S\), pero no\(\int_{a}^{b}|f(x,y)|\,dx\) lo hace.

    [teorem:8] (Prueba de Dirichlet para Convergencia Uniforme I) Si\(g,\)\(g_{x},\) y\(h\) son continuos en\([a,b)\times S,\) entonces

    \[\int_{a}^{b}g(x,y)h(x,y)\,dx\]

    converge uniformemente\(S\) si se cumplen las siguientes condiciones:

    \[\displaystyle{\lim_{x\to b-}\left\{\sup_{y\in S}|g(x,y)|\right\}=0};\]

    Hay una constante\(M\) tal que

    \[\sup_{y\in S}\left|\int_{a}^{x}h(u,y)\,du\right|< M, \quad a\le x<b;\]

    \(\int_{a}^{b}|g_{x}(x,y)|\,dx\)converge uniformemente en\(S.\)

    Si

    \[\label{eq:20} H(x,y)=\int_{a}^{x}h(u,y)\,du,\]

    luego integración por rendimientos de piezas

    \[\begin{aligned} \int_{r}^{r_{1}}g(x,y)h(x,y)\,dx&=&\int_{r}^{r_{1}}g(x,y)H_{x}(x,y)\,dx \nonumber\\ &=&g(r_{1},y)H(r_{1},y)-g(r,y)H(r,y)\label{eq:21}\\ &&-\int_{r}^{r_{1}}g_{x}(x,y)H(x,y)\,dx. \nonumber\end{aligned}\]

    Desde el supuesto (b) y [eq:20] implican que\(|H(x,y)|\le M,\)\((x,y)\in (a,b]\times S\), Eqn. [eq:21] implica que

    \[\label{eq:22} \left|\int_{r}^{r_{1}}g(x,y)h(x,y)\,dx\right|< M\left(2\sup_{x\ge r}|g(x,y)|+\int_{r}^{r_{1}}|g_{x}(x,y)|\,dx\right)\]

    encendido\([r,r_{1}]\times S\).

    Ahora supongamos\(\epsilon>0\). Del supuesto (a), hay\(r_{0} \in [a,b)\) tal que\(|g(x,y)|<\epsilon\) sobre\(S\) si\(r_{0}\le x <b\). De la suposición (c) y el teorema [teorema: 6], hay\(s_{0}\in [a,b)\) tal que

    \[\int_{r}^{r_{1}}|g_{x}(x,y)|\,dx<\epsilon, \quad y\in S, \quad s_{0}<r<r_{1}<b.\]

    Por lo tanto [eq:22] implica que

    \[\left|\int_{r}^{r_{1}}g(x,y)h(x,y)\right| < 3M\epsilon, \quad y\in S, \quad \max(r_{0},s_{0})<r<r_{1}<b.\]

    Ahora Teorema [teorem:4] implica la conclusión declarada.

    El enunciado de este teorema es complicado, pero aplicarlo no lo es; basta con buscar una factorización\(f=gh\), donde\(h\) tenga una antderivada acotada sobre\([a,b)\) y\(g\) esté “pequeña” cerca\(b\). Entonces integrar por partes y esperar que algo bonito suceda. Un comentario similar aplica al Teorema 9, que sigue.

    Ejemplo\(\PageIndex{1}\)

    Agrega texto aquí.

    Solución

    Agrega texto aquí.

    Let

    \[I(y)=\int_{0}^{\infty}\frac{\cos xy}{x+y}\,dx,\quad y>0.\]

    La desigualdad obvia

    \[\left|\frac{\cos xy}{x+y}\right|\le \frac{1}{x+y}\]

    aquí es inútil, ya que

    \[\int_{0}^{\infty}\frac{dx}{x+y}=\infty.\]

    Sin embargo, la integración por partes rinde

    \[\begin{aligned} \int_{r}^{r_{1}}\frac{\cos xy}{x+y}\,dx &=& \frac{\sin xy}{y(x+y)}\biggr|_{r}^{r_{1}}+ \int_{r}^{r_{1}}\frac{\sin xy}{y(x+y)^{2}}\,dx\\ &=&\frac{\sin r_{1}y}{y(r_{1}+y)}-\frac{\sin ry}{y(r+y)} +\int_{r}^{r_{1}}\frac{\sin xy}{y(x+y)^{2}}\,dx.\end{aligned}\]

    Por lo tanto, si\(0< r<r_{1}\), entonces

    \[\begin{aligned} \left|\int_{r}^{r_{1}}\frac{\cos xy}{x+y}\,dx\right|< \frac{1}{y}\left(\frac{2}{r+y}+\int_{r}^{\infty}\frac{1}{(x+y)^{2}}\right) \le \frac{3}{y(r+y)^{2}}\le \frac{3}{\rho(r+\rho)}\end{aligned}\]

    si\(y\ge \rho>0\). Ahora Teorema [teorem:4] implica que\(I(y)\) converge uniformemente sobre\([\rho,\infty)\) si\(\rho>0\).

    Te dejamos la prueba del siguiente teorema (Ejercicio [exer:10]).

    [teorem:9] (Prueba de Dirichlet para Convergencia Uniforme II) Si\(g,\)\(g_{x},\) y\(h\) son continuos en\((a,b]\times S,\) entonces

    \[\int_{a}^{b}g(x,y)h(x,y)\,dx\]

    converge uniformemente\(S\) si se cumplen las siguientes condiciones:

    \(\displaystyle{\lim_{x\to a+}\left\{\sup_{y\in S}|g(x,y)|\right\}=0};\)

    Hay una constante\(M\) tal que

    \[\sup_{y\in S}\left|\int_{x}^{b}h(u,y)\,du\right| \le M, \quad a< x\le b;\]

    \(\int_{a}^{b}|g_{x}(x,y)|\,dx\)converge uniformemente en\(S\).

    Al recordar los Teoremas 3.4.10 (p. 163), 4.3.20 (p. 217), y 4.4.16 (p. 248), se puede ver por qué asociamos Teoremas [teorema: 8] y [teorem:9] con Dirichlet.


    This page titled 1.5: Pruebas de Dirichlet is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.