1.4: Integrales inpropias convergentes absolutamente uniformemente
- Page ID
- 109213
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)(Convergencia Absoluta Uniforme I) [definición:4] La integral impropia
\[\int_{a}^{b}f(x,y)\,dx=\lim_{r\to b-}\int_{a}^{r}f(x,y)\,dx\]
se dice que convergen de manera absolutamente uniforme en\(S\) si la integral impropia
\[\int_{a}^{b}|f(x,y)|\,dx=\lim_{r\to b-}\int_{a}^{r}|f(x,y)|\,dx\]
converge uniformemente sobre\(S\); es decir, si, para cada uno\(\epsilon>0\), hay\(r_{0}\in [a,b)\) tal que
\[\left|\int_{a}^{b}|f(x,y)|\,dx-\int_{a}^{r}|f(x,y)|\,dx\right| <\epsilon, \quad y\in S,\quad r_{0}<r<b.\]
Para ver que esta definición tiene sentido, recordemos que si\(f\) es localmente integrable on\([a,b)\) for all\(y\) in\(S\), entonces así es\(|f|\) (Teorema 3.4.9, p. 161). Teorema [teorem:4] con\(f\) reemplazado por\(|f|\) implica que\(\int_{a}^{b}f(x,y)\,dx\) converge absolutamente uniformemente sobre\(S\) si y solo si, para cada uno\(\epsilon>0\), hay\(r_{0}\in [a,b)\) tal que
\[\int_{r}^{r_{1}}|f(x,y)|\,dx<\epsilon,\quad y\in S,\quad r_{0}\le r<r_{1}<b .\]
Desde
\[\left|\int_{r}^{r_{1}}f(x,y)\,dx\right| \le \int_{r}^{r_{1}}|f(x,y)|\,dx,\]
Teorema [teorem:4] implica que si\(\int_{a}^{b}f(x,y)\,dx\) converge absolutamente uniformemente en\(S\) entonces converge uniformemente en\(S\).
[teorema:6] (Prueba de Weierstrass para Convergencia Absoluta Uniforme I) Supongamos que no\(M=M(x)\) es negativo en\([a,b),\)\(\int_{a}^{b}M(x)\,dx<\infty,\) y
\[\label{eq:19} |f(x,y)| \le M(x), \quad y\in S,\quad a\le x<b.\]
Luego\(\int_{a}^{b}f(x,y)\,dx\) converge de manera absolutamente uniforme en\(S.\)
Denote\(\int_{a}^{b}M(x)\,dx=L<\infty\). Por definición, para cada uno\(\epsilon>0\) hay\(r_{0}\in [a,b)\) tal que
\[L-\epsilon < \int_{a}^{r}M(x)\,dx \le L,\quad r_{0}<r<b.\]
Por lo tanto, si\(r_{0}< r\le r_{1},\) entonces
\[0\le \int_{r}^{r_{1}}M(x)\,dx=\left(\int_{a}^{r_{1}}M(x)\,dx -L\right)- \left(\int_{a}^{r}M(x)\,dx -L\right)<\epsilon\]
Esto y [eq:19] implican que
\[\int_{r}^{r_{1}}|f(x,y)|\,dx\le \int_{r}^{r_{1}} M(x)\,dx <\epsilon,\quad y\in S, \quad a\le r_{0}<r<r_{1}<b.\]
Ahora Teorema [teorem:4] implica la conclusión declarada.
[ejemplo:7] Supongamos que\(g=g(x,y)\) es integrable localmente\([0,\infty)\) para todos\(y\in S\) y\(a_{0}\ge 0\), para algunos, hay constantes\(K\) y\(p_{0}\) tales que
\[|g(x,y)| \le Ke^{p_{0}x},\quad y\in S, \quad x\ge a_{0}.\]
Si\(p>p_{0}\) y\(r\ge a_{0}\), entonces
\[\begin{aligned} \int_{r}^{\infty}e^{-px} |g(x,y)|\,dx &=& \int_{r}^{\infty} e^{-(p-p_{0})x}e^{-p_{0}x}|g(x,y)|\,dx\\ &\le& K\int_{r}^{\infty} e^{-(p-p_{0})x}\,dx= \frac{K e^{-(p-p_{0})r}}{p-p_{0}},\end{aligned}\]
así\(\int_{0}^{\infty}e^{-px} g(x,y)\,dx\) converge absolutamente en\(S\). Por ejemplo, desde
\[|x^{\alpha}\sin xy|<e^{p_{0}x}\text{\quad and \quad} |x^{\alpha}\cos xy|<e^{p_{0}x}\]
para\(x\) suficientemente grande si\(p_{0}>0\), Teorema [teorema: 4] implica eso\(\int_{0}^{\infty}e^{-px}x^{\alpha}\sin xy\,dx\) y\(\int_{0}^{\infty}e^{-px}x^{\alpha}\cos xy\,dx\) convergen absolutamente uniformemente sobre\((-\infty,\infty)\) si\(p>0\) y\(\alpha~\ge~0\). De hecho,\(\int_{0}^{\infty}e^{-px}x^{\alpha}\sin xy\,dx\) converge absolutamente en\((-\infty,\infty)\) si\(p>0\) y\(\alpha>-1\). (¿Por qué?)
(Convergencia Uniforme Absoluta II) [definición:5] La integral impropia
\[\int_{a}^{b}f(x,y)\,dx=\lim_{r\to a+}\int_{r}^{b}f(x,y)\,dx\]
se dice que convergen de manera absolutamente uniforme en\(S\) si la integral impropia
\[\int_{a}^{b}|f(x,y)|\,dx=\lim_{r\to a+}\int_{r}^{b}|f(x,y)|\,dx\]
converge uniformemente sobre\(S\); es decir, si, para cada uno\(\epsilon>0\), hay\(r_{0}\in (a,b]\) tal que
\[\left|\int_{a}^{b}|f(x,y)|\,dx-\int_{r}^{b}|f(x,y)|\,dx\right| <\epsilon, \quad y\in S, \quad a<r<r_{0}\le b.\]
Te dejamos a ti (Ejercicio [exer:7]) probar el siguiente teorema.
[teorem:7] (Prueba de Weierstrass para Convergencia Uniforme Absoluta II) Supongamos que no\(M=M(x)\) es negativo en\((a,b],\)\(\int_{a}^{b}M(x)\,dx<\infty,\) y
\[|f(x,y)| \le M(x), \quad y\in S, \quad x\in (a,b].\]
Entonces\(\int_{a}^{b}f(x,y)\,dx\) converge absolutamente uniformemente en\(S\).
[ejemplo:8] Si\(g=g(x,y)\) es integrable localmente\((0,1]\) para todos\(y\in S\) y
\[|g(x,y)| \le Ax^{-\beta}, \quad 0<x \le x_{0},\]
para cada uno\(y \in S\), entonces
\[\int_{0}^{1} x^{\alpha}g(x,y)\,dx\]
converge de manera absolutamente uniforme en\(S\) if\(\alpha>\beta-1\). Para ver esto, tenga en cuenta que si\(0<r< r_{1}\le x_{0}\), entonces
\[\int_{r_{1}}^{r}x^{\alpha}|g(x,y)|\,dx \le A\int_{r_{1}}^{r} x^{\alpha-\beta}\,dx= \frac{Ax^{\alpha-\beta+1}}{\alpha-\beta+1}\biggr|_{r_{1}}^{r}< \frac{Ar^{\alpha-\beta+1}}{\alpha-\beta+1}.\]
Aplicando esto con\(\beta=0\) muestra que
\[F(y)=\int_{0}^{1} x^{\alpha}\cos xy\,dx\]
converge de manera absolutamente uniforme en\((-\infty,\infty)\) si\(\alpha>-1\) y
\[G(y)=\int_{0}^{1}x^{\alpha}\sin xy \,dx\]
converge de manera absolutamente uniforme en\((-\infty,\infty)\) if\(\alpha>-2\).
Al recordar el Teorema 4.4.15 (p. 246), se puede ver por qué asociamos Teoremas [teorema:6] y [teorem:7] con Weierstrass.