Saltar al contenido principal
LibreTexts Español

8.1: La función Arcangente

  • Page ID
    108914
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Definición

    Para cualquiera\(x \in \mathbb{R},\) que llamemos

    \[\arctan (x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t\]

    el arcoangente de\(x .\)

    Proposición\(\PageIndex{1}\)

    La función arcangente es diferenciable en cada\(x \in \mathbb{R} .\)

    Además, si\(f(x)=\arctan (x),\) entonces

    \[f^{\prime}(x)=\frac{1}{1+x^{2}}.\]

    Prueba

    El resultado se desprende inmediatamente del Teorema\(7.5 .4 .\)\(\quad\) Q.E.D.

    Proposición\(\PageIndex{2}\)

    El arcoangente va en aumento en\(\mathbb{R}\).

    Prueba

    El resultado se desprende inmediatamente de la proposición anterior y del hecho de que

    \[\frac{1}{1+x^{2}}>0\]

    para cada\(x \in \mathbb{R}\). \(\quad\)Q.E.D.

    Definición

    \(\pi=2 \lim _{x \rightarrow+\infty} \arctan (x)=2 \int_{0}^{+\infty} \frac{1}{1+t^{2}} d t\)

    Tenga en cuenta que\(0<\pi<4\) por ejemplo\(7.7 .1 .\)

    La siguiente proposición dice que la función arcoangente es una función impar.

    Teorema\(\PageIndex{3}\)

    Para cualquier\(x \in \mathbb{R},\) arctan\((x)=-\arctan (-x)\).

    Prueba

    Usando la sustitución\(t=-u,\) que tenemos

    \[\begin{aligned} \arctan (x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t=-\int_{0}^{-x} \frac{1}{1+u^{2}} d u=-\arctan (-x). & \end{aligned}\]

    Q.E.D.

    Ahora se deduce que

    \[\lim _{x \rightarrow-\infty} \arctan (x)=-\lim _{x \rightarrow-\infty} \arctan (-x)=-\frac{\pi}{2}.\]

    De ahí que el rango de la función arcangente sea\(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\).

    Proposición\(\PageIndex{4}\)

    Si\(x>0,\) entonces

    \[\arctan (x)+\arctan \left(\frac{1}{x}\right)=\frac{\pi}{2}.\]

    Prueba

    Usando la sustitución\(t=\frac{1}{u},\) que tenemos

    \[\begin{aligned} \arctan \left(\frac{1}{x}\right) &=\int_{0}^{\frac{1}{x}} \frac{1}{1+t^{2}} d t \\ &=\int_{+\infty}^{x} \frac{1}{1+\frac{1}{u^{2}}}\left(-\frac{1}{u^{2}}\right) d u \\ &=-\int_{+\infty}^{x} \frac{1}{1+u^{2}} d u \\ &=\int_{x}^{+\infty} \frac{1}{1+u^{2}} d u \\ &=\frac{\pi}{2}-\int_{0}^{x} \frac{1}{1+u^{2}} d u \\ &=\frac{\pi}{2}-\arctan (x). \end{aligned}\]

    Q.E.D.

    Proposición\(\PageIndex{5}\)

    Si\(x<0\), entonces

    \[\arctan (x)+\arctan \left(\frac{1}{x}\right)=-\frac{\pi}{2}.\]

    Prueba

    El resultado se desprende inmediatamente de la proposición anterior y del hecho de que arcoangente es una función impar.

    Ejercicio\(\PageIndex{1}\)

    Demuestre que arctan\((1)=\frac{\pi}{4}\) y\(\arctan (-1)=-\frac{\pi}{4}\).


    This page titled 8.1: La función Arcangente is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Dan Sloughter via source content that was edited to the style and standards of the LibreTexts platform.