18.7: Ejercicios
- Page ID
- 118275
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Ejercicio\(\PageIndex{1}\)
Dejar\(\mathord{\equiv}\) representar la relación sobre\(\mathbb{R}\times\mathbb{R}\) dónde\((x_1,y_1) \equiv (x_2,y_2)\) significa\(y_1 - x_1^2 = y_2 - x_2^2\text{.}\)
- Verificar que\(\mathord{\equiv}\) sea una relación de equivalencia.
- Describir las clases de equivalencia\([(0,0)]\text{,}\)\([(0,1)]\text{,}\) y\([(1,0)]\) geométricamente como conjuntos de puntos en el plano.
Ejercicio\(\PageIndex{2}\)
Dada una gráfica conectada (no dirigida)\(G\text{,}\) podemos definir una relación sobre el conjunto\(V\) de vértices de la\(G\) siguiente manera:\(v_1 R v_2\) digamos que existe un rastro dentro de\(G\) principio en vértice\(v_1\) y terminando en vértice\(v_2\) que atraviesa un número par de aristas.
- Demostrar que\(R\) es una relación de equivalencia en\(V\text{.}\)
- Determinar las clases de equivalencia para esta relación cuando\(G\) es la gráfica a continuación.

Relaciones de equivalencia y clases.
En cada uno de los Ejercicios 3—12, se le da un conjunto\(A\) y una relación\(R\) sobre\(A\text{.}\) Determinar si\(R\) es una relación de equivalencia, y, en su caso, describir sus clases de equivalencia. Trate de ser más descriptivo que solo “\([a]\)es el conjunto de todos los elementos que son equivalentes a\(a\text{.}\)”
Ejercicio\(\PageIndex{3}\)
\(A = \{a, b, c\} \text{;}\)\(R = \{(a,a),(b,b),(c,c),(a,b),(b,a)\} \text{.}\)
Ejercicio\(\PageIndex{4}\)
\(A = \{-1, 0, 1\} \text{;}\)\(R = \{(x,y) | x^2 = y^2\} \text{.}\)
Ejercicio\(\PageIndex{5}\)
\(A\)es el conjunto de potencia de algún conjunto;\(R\) es la relación de subconjunto.
Ejercicio\(\PageIndex{6}\)
\(A = \mathbb{R} \text{;}\)\(x_1 \mathrel{R} x_2 \)significa\(f(x_1) = f(x_2) \text{,}\) dónde\(f: \mathbb{R} \rightarrow \mathbb{R}\) está la función\(f(x) = x^2 \text{.}\)
Ejercicio\(\PageIndex{7}\)
\(A\)es un conjunto abstracto;\(a_1 \mathrel{R} a_2\) significa\(f(a_1) = f(a_2)\text{,}\) donde\(f: A \rightarrow B\) es una función arbitraria con dominio\(A\text{.}\)
Ejercicio\(\PageIndex{8}\)
\(A\)es el conjunto de todas las expresiones “formales”\(a/b\text{,}\) donde\(a,b\) son enteros y\(b\) es distinto de cero;\((a/b) \mathrel{R} (c/d) \) significa\(ad = bc \text{.}\)
Nota: No pienses\(a/b\) como una fracción de la manera habitual; en cambio, piensa en ella como una colección de símbolos que consiste en dos enteros en un orden específico con una diagonal hacia delante entre ellos.
Ejercicio\(\PageIndex{9}\)
\(A\)es el conjunto de potencia de algún conjunto finito;\(X \mathrel{R} Y\) significa\(\vert X \vert = \vert Y \vert \text{.}\)
Ejercicio\(\PageIndex{10}\)
\(A\)es el conjunto de todas las líneas rectas en el plano;\(L_1 \mathrel{R} L_2\) media\(L_1\) es paralela a\(L_2\text{.}\)
Ejercicio\(\PageIndex{11}\)
\(A\)es el conjunto de todas las líneas rectas en el plano;\(L_1 \mathrel{R} L_2\) media\(L_1\) es perpendicular a\(L_2\text{.}\)
Ejercicio\(\PageIndex{12}\)
\(A = \mathbb{R} \times \mathbb{R} \text{;}\)\((x_1,y_1) \mathrel{R} (x_2,y_2)\)significa\(x_1^2 + y_1^2 = x_2^2 + y_2^2 \text{.}\)
- Pista.
-
¿La expresión te\(x^2 + y^2\) recuerda algo desde la geometría?