5.3: Matrices simétricas y hermitianas
- Page ID
- 119029
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Cuando una matriz real\(A\) es igual a su transposición\(A^{T}=A\),, decimos que la matriz es simétrica. Cuando una matriz compleja\(A\) es igual a su transposición conjugada\(\mathrm{A}^{+}=\mathrm{A}\),, decimos que la matriz es hermitiana.
Una de las razones por las que las matrices simétricas y hermitianas son importantes es porque sus valores propios son reales y sus vectores propios son ortogonales. Dejar\(\lambda_{i}\) y\(\lambda_{j}\) ser valores propios\(x_{i}\) y y\(x_{j}\) vectores propios de la matriz posiblemente compleja A.
\[\mathrm{A} x_{i}=\lambda_{i} x_{i}, \quad \mathrm{~A} x_{j}=\lambda_{j} x_{j} . \nonumber \]
Multiplicando la primera ecuación de la izquierda por\(x_{j}^{\dagger}\), y tomando la transposición conjugada de la segunda ecuación y multiplicando a la derecha por\(x_{i}\), obtenemos
\[x_{j}^{\dagger} \mathrm{A} x_{i}=\lambda_{i} x_{j}^{\dagger} x_{i}, \quad x_{j}^{\dagger} \mathrm{A}^{\dagger} x_{i}=\bar{\lambda}_{j} x_{j}^{\dagger} x_{i} . \nonumber \]
Si\(A\) es hermitiano, entonces\(A^{+}=A\), y restando la segunda ecuación de los primeros rendimientos
\[\left(\lambda_{i}-\bar{\lambda}_{j}\right) x_{j}^{\dagger} x_{i}=0 \nonumber \]
Si\(i=j\), entonces desde entonces\(x_{i}^{\dagger} x_{i}>0\), tenemos\(\bar{\lambda}_{i}=\lambda_{i}\): todos los valores propios son reales. Si\(i \neq j\) y\(\lambda_{i} \neq \lambda_{j}\), entonces\(x_{j}^{\dagger} x_{i}=0\): los vectores propios con valores propios distintos son ortogonales. Por lo general, los vectores propios se hacen ortonormales, y la diagonalización hace uso de matrices unitarias ortogonales reales o complejas.
Ejemplo: Diagonalizar la matriz simétrica
\[\mathrm{A}=\left(\begin{array}{ll} a & b \\ b & a \end{array}\right) \nonumber \]
La ecuación característica de\(\mathrm{A}\) viene dada por
\[(a-\lambda)^{2}=b^{2}, \nonumber \]
con valores propios reales\(\lambda_{1}=a+b\) y\(\lambda_{2}=a-b\). El vector propio con valor propio\(\lambda_{1}\) satisface\(-x_{1}+x_{2}=0\), y el vector propio con autovalor\(\lambda_{2}\) satisface\(x_{1}+x_{2}=0\). Normalizando los vectores propios, tenemos
\[\lambda_{1}=a+b, \mathrm{X}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{l} 1 \\ 1 \end{array}\right) ; \quad \lambda_{2}=a-b, \mathrm{X}_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{r} 1 \\ -1 \end{array}\right) \nonumber \]
Evidentemente, los vectores propios son ortonormales. La diagonalización usando\(\mathrm{A}=\mathrm{Q} \Lambda \mathrm{Q}^{-1}\) viene dada por
\[\left(\begin{array}{ll} a & b \\ b & a \end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{rr} 1 & 1 \\ 1 & -1 \end{array}\right)\left(\begin{array}{cc} a+b & 0 \\ 0 & a-b \end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{rr} 1 & 1 \\ 1 & -1 \end{array}\right), \nonumber \]
que puede verificarse directamente por multiplicación matricial. La matriz\(Q\) es una matriz ortogonal simétrica para que\(Q^{-1}=Q\).