Saltar al contenido principal
LibreTexts Español

10.2E: Sistemas Lineales de Ecuaciones Diferenciales (Ejercicios)

  • Page ID
    114687
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Template:MathJaxTrench

    Q10.2.1

    1. Reescribir el sistema en forma de matriz y verificar que la función vectorial dada satisface el sistema para cualquier elección de las constantes\(c_1\) y\(c_2\).

    1. \(\begin{array}{ccl}y'_1&=&2y_1 + 4y_2\\ y_2'&=&4y_1+2y_2;\end{array} \quad {\bf y}=c_1\twocol11e^{6t}+c_2\twocol1{-1}e^{-2t}\)
    2. \(\begin{array}{ccl}y'_1&=&-2y_1 - 2y_2\\ y_2'&=&-5y_1 + \phantom{2}y_2;\end{array} \quad {\bf y}=c_1\twocol11e^{-4t}+c_2\twocol{-2}5e^{3t}\)
    3. \(\begin{array}{ccr}y'_1&=&-4y_1 -10y_2\\ y_2'&=&3y_1 + \phantom{1}7y_2;\end{array} \quad {\bf y}=c_1\twocol{-5}3e^{2t}+c_2\twocol2{-1}e^t\)
    4. \(\begin{array}{ccl}y'_1&=&2y_1 +\phantom{2}y_2 \\ y_2'&=&\phantom{2}y_1 + 2y_2;\end{array} \quad {\bf y}=c_1\twocol11e^{3t}+c_2\twocol1{-1}e^t\)

    2. Reescribir el sistema en forma de matriz y verificar que la función vectorial dada satisface el sistema para cualquier elección de las constantes\(c_1\),\(c_2\), y\(c_3\).

    1. \(\begin{array}{ccr}y'_1&=&- y_1+2y_2 + 3y_3 \\ y_2'&=&y_2 + 6y_3\\y_3'&=&- 2y_3;\end{array}\)
      \({\bf y}=c_1\threecol110e^t+c_2\threecol100e^{-t}+c_3\threecol1{-2}1e^{-2t}\)
    2. \(\begin{array}{ccc}y'_1&=&\phantom{2y_1+}2y_2 + 2y_3 \\ y_2'&=&2y_1\phantom{+2y_2} + 2y_3\\y_3'&=&2y_1 + 2y_2;\phantom{+2y_3}\end{array}\)
      \({\bf y}=c_1\threecol{-1}01e^{-2t}+c_2\threecol0{-1}1e^{-2t}+c_3\threecol111e^{4t}\)
    3. \(\begin{array}{ccr}y'_1&=&-y_1 +2y_2 + 2y_3\\ y_2'&=&2y_1 -\phantom{2}y_2 +2y_3\\y_3'&=&2y_1 + 2y_2 -\phantom{2}y_3;\end{array}\)
      \({\bf y}=c_1\threecol{-1}01e^{-3t}+c_2\threecol0{-1}1e^{-3t}+c_3\threecol111e^{3t}\)
    4. \(\begin{array}{ccr}y'_1&=&3y_1 - \phantom{2}y_2 -\phantom{2}y_3 \\ y_2'&=&-2y_1 + 3y_2 + 2y_3\\y_3'&=&\phantom{-}4y_1 -\phantom{3}y_2 - 2y_3;\end{array}\)
      \({\bf y}=c_1\threecol101e^{2t}+c_2\threecol1{-1}1e^{3t}+c_3\threecol1{-3}7e^{-t}\)

    3. Reescriba el problema del valor inicial en forma de matriz y verifique que la función vectorial dada sea una solución.

    1. \(\begin{array}{ccl}y'_1 &=&\phantom{-2}y_1+\phantom{4}y_2\\ y_2'&=&-2y_1 + 4y_2,\end{array} \begin{array}{ccr}y_1(0)&=&1\\y_2(0)&=&0;\end{array}\)\({\bf y}=2\twocol11e^{2t}-\twocol12e^{3t}\)
    2. \(\begin{array}{ccl}y'_1 &=&5y_1 + 3y_2 \\ y_2'&=&- y_1 + y_2,\end{array} \begin{array}{ccr}y_1(0)&=&12\\y_2(0)&=&-6;\end{array}\)\({\bf y}=3\twocol1{-1}e^{2t}+3\twocol3{-1}e^{4t}\)

    4. Reescriba el problema del valor inicial en forma de matriz y verifique que la función vectorial dada sea una solución.

    1. \(\begin{array}{ccr}y'_1&=&6y_1 + 4y_2 + 4y_3 \\ y_2'&=&-7y_1 -2y_2 - y_3,\\y_3'&=&7y_1 + 4y_2 + 3y_3\end{array},\; \begin{array}{ccr}y_1(0)&=&3\\ y_2(0)&=&-6\\ y_3(0)&=&4\end{array}\)
      \({\bf y}=\threecol1{-1}1e^{6t}+2\threecol1{-2}1e^{2t}+\threecol0{-1}1e^{-t}\)
    2. \(\begin{array}{ccr}y'_1&=& \phantom{-}8y_1 + 7y_2 +\phantom{1}7y_3 \\ y_2'&=&-5y_1 -6y_2 -\phantom{1}9y_3,\\y_3'&=& \phantom{-}5y_1 + 7y_2 +10y_3,\end{array}\ \begin{array}{ccr}y_1(0)&=&2\\ y_2(0)&=&-4\\ y_3(0)&=&3\end{array}\)
      \({\bf y}=\threecol1{-1}1e^{8t}+\threecol0{-1}1e^{3t}+\threecol1{-2}1e^t\)

    5. Reescribir el sistema en forma de matriz y verificar que la función vectorial dada satisface el sistema para cualquier elección de las constantes\(c_1\) y\(c_2\).

    1. \(\begin{array}{ccc}y'_1&=&-3y_1+2y_2+3-2t \\ y_2'&=&-5y_1+3y_2+6-3t\end{array}\)
      \({\bf y}=c_1\left[\begin{array}{c}2\cos t\\3\cos t-\sin t\end{array}\right]+c_2\left[\begin{array}{c}2\sin t\\3\sin t+\cos t \end{array}\right]+\twocol1t\)
    2. \(\begin{array}{ccc}y'_1&=&3y_1+y_2-5e^t \\ y_2'&=&-y_1+y_2+e^t\end{array}\)
      \({\bf y}=c_1\twocol{-1}1e^{2t}+c_2\left[\begin{array}{c}1+t\\-t\end{array} \right]e^{2t}+\twocol13e^t\)
    3. \(\begin{array}{ccl}y'_1&=&-y_1-4y_2+4e^t+8te^t \\ y_2'&=&-y_1-\phantom{4}y_2+e^{3t}+(4t+2)e^t\end{array}\)
      \({\bf y}=c_1\twocol21e^{-3t}+c_2\twocol{-2}1e^t+\left[\begin{array}{c} e^{3t}\\2te^t\end{array}\right]\)
    4. \(\begin{array}{ccc}y'_1&=&-6y_1-3y_2+14e^{2t}+12e^t \\ y_2'&=&\phantom{6}y_1-2y_2+7e^{2t}-12e^t\end{array}\)
      \({\bf y}=c_1\twocol{-3}1e^{-5t}+c_2\twocol{-1}1e^{-3t}+ \left[\begin{array}{c}e^{2t}+3e^t\\2e^{2t}-3e^t\end{array}\right]\)

    6. Convertir la ecuación escalar lineal

    \[P_0(t)y^{(n)}+P_1(t)y^{(n-1)}+\cdots+P_n(t)y(t)=F(t) \tag{A}\]

    en un\(n\times n\) sistema equivalente

    \[{\bf y'}=A(t){\bf y}+{\bf f}(t),\nonumber \]

    y muestran eso\(A\) y\({\bf f}\) son continuos en un intervalo\((a,b)\) si y solo si (A) es normal on\((a,b)\).

    7. Una función de matriz

    \[Q(t)=\left[\begin{array}{cccc}{q_{11}(t)}&{q_{12}(t)}&{\cdots }&{q_{1s}(t)} \\ {q_{21}(t)}&{q_{22}(t)}&{\cdots }&{q_{2s}(t)} \\ {\vdots }&{\vdots }&{\ddots }&{\vdots } \\ {q_{r1}(t)}&{q_{r2}(t)}&{\cdots }&{q_{rs}(t)} \end{array} \right] \nonumber\]

    se dice que es diferenciable si sus entradas\(\{q_{ij}\}\) son diferenciables. Entonces la derivada\(Q'\) se define por

    \[Q(t)=\left[\begin{array}{cccc}{q'_{11}(t)}&{q'_{12}(t)}&{\cdots }&{q'_{1s}(t)} \\ {q'_{21}(t)}&{q'_{22}(t)}&{\cdots }&{q'_{2s}(t)} \\ {\vdots }&{\vdots }&{\ddots }&{\vdots } \\ {q'_{r1}(t)}&{q'_{r2}(t)}&{\cdots }&{q'_{rs}(t)} \end{array} \right] \nonumber\]

    1. Probar: Si\(P\) y\(Q\) son matrices diferenciables tal que\(P+Q\) se define\(c_1\) y si y\(c_2\) son constantes, entonces\[(c_1P+c_2Q)'=c_1P'+c_2Q'.\nonumber \]
    2. Demostrar: Si\(P\) y\(Q\) son matrices diferenciables tal que\(PQ\) se define, entonces\[(PQ)'=P'Q+PQ'.\nonumber \]

    8. Verifica eso\(Y' = AY\).

    1. \(Y=\left[\begin{array}{cc}{e^{6t}}&{e^{-2t}}\\{e^{6t}}&{-e^{-2t}} \end{array} \right],\quad A=\left[\begin{array}{cc}{2}&{4}\\{4}&{2} \end{array} \right]\)
    2. \(Y=\left[\begin{array}{cc}{e^{-4t}}&{-2e^{3t}}\\{e^{-4t}}&{5e^{3t}} \end{array} \right],\quad A=\left[\begin{array}{cc}{-2}&{-2}\\{-5}&{1} \end{array} \right]\)
    3. \(Y=\left[\begin{array}{cc}{-5e^{2t}}&{2e^{t}}\\{3e^{2t}}&{-e^{t}} \end{array} \right],\quad A=\left[\begin{array}{cc}{-4}&{-10}\\{3}&{7} \end{array} \right]\)
    4. \(Y=\left[\begin{array}{cc}{e^{3t}}&{e^{t}}\\{e^{3t}}&{-e^{t}} \end{array} \right],\quad A=\left[\begin{array}{cc}{2}&{1}\\{1}&{2} \end{array} \right]\)
    5. \(Y = \left[\begin{array}{ccc} e^t&e^{-t}& e^{-2t}\\ e^t&0&-2e^{-2t}\\ 0&0&e^{-2t}\end{array}\right], \quad A = \left[\begin{array}{ccc}{-1}&{2}&{3}\\{0}&{1}&{6}\\{0}&{0}&{-2} \end{array} \right]\)
    6. \(Y = \left[\begin{array}{ccc} {-e^{-2t}}&{-e^{-2t}}& {e^{4t}}\\ {0}&{e^{-2t}}&{e^{4t}}\\ {e^{-2t}}&{0}&{e^{4t}}\end{array}\right], \quad A = \left[\begin{array}{ccc}{0}&{2}&{2}\\{2}&{0}&{2}\\{2}&{2}&{0} \end{array} \right]\)
    7. \(Y = \left[\begin{array}{ccc} {e^{3t}}&{e^{-3t}}& {0}\\ {e^{3t}}&{0}&{-e^{-3t}}\\ {e^{3t}}&{e^{-3t}}&{e^{-3t}}\end{array}\right], \quad A = \left[\begin{array}{ccc}{-9}&{6}&{6}\\{-6}&{3}&{6}\\{-6}&{6}&{3} \end{array} \right]\)
    8. \(Y = \left[\begin{array}{ccc} {e^{2t}}&{e^{3t}}& {e^{-t}}\\ {0}&{-e^{3t}}&{-3e^{-t}}\\ {e^{2t}}&{e^{3t}}&{7e^{-t}}\end{array}\right], \quad A = \left[\begin{array}{ccc}{3}&{-1}&{-1}\\{-2}&{3}&{2}\\{4}&{-1}&{-2} \end{array} \right]\)

    9. Supongamos

    \[{\bf y}_1=\twocol{y_{11}}{y_{21}}\quad \text{and} \quad{\bf y}_2=\twocol{y_{12}}{y_{22}}\nonumber \]

    son soluciones del sistema homogéneo

    \[{\bf y}'=A(t){\bf y}, \tag{A}\]

    y definir

    \[Y= \left[\begin{array}{cc}{y_{11}}&{y_{12}}\\{y_{21}}&{y_{22}}\end{array}\right].\nonumber \]

    1. Demuestre eso\(Y'=AY\).
    2. Mostrar que si\({\bf c}\) es un vector constante entonces\({\bf y}= Y{\bf c}\) es una solución de (A).
    3. Generalizaciones estatales de (a) y (b) para\(n\times n\) sistemas.

    10. Supongamos que\(Y\) es una matriz cuadrada diferenciable.

    1. Encuentra una fórmula para el derivado de\(Y^2\).
    2. Encuentra una fórmula para la derivada de\(Y^n\), donde\(n\) es cualquier entero positivo.
    3. Exponer cómo los resultados obtenidos en (a) y (b) son análogos a los resultados del cálculo relativo a las funciones escalares.

    11. Se puede demostrar que si\(Y\) es una función de matriz cuadrada diferenciable e invertible, entonces\(Y^{-1}\) es diferenciable.

    1. Demostrar que (\(Y^{-1})'= -Y^{-1}Y'Y^{-1}\). (Pista: Diferenciar la identidad\(Y^{-1}Y=I\).)
    2. Encuentra la derivada de\(Y^{-n}=\left(Y^{-1}\right)^n\), donde\(n\) es un entero positivo.
    3. Exponer cómo los resultados obtenidos en (a) y (b) son análogos a los resultados del cálculo relativo a las funciones escalares.

    12. Demostrar que el Teorema 10.2.1 implica Teorema 9.1.1. HINTA: Escribe la función escalar\[P_{0}(x)y^{(n)}+P_{1}(x)y^{(n-1)}+\cdots +P_{n}(x)y=F(x)\nonumber\] como un\(n\times n\) sistema de ecuaciones lineales.

    13. Supongamos que\({\bf y}\) es una solución del\(n\times n\) sistema\({\bf y}'=A(t){\bf y}\) encendido\((a,b)\), y que la\(n\times n\) matriz\(P\) es invertible y diferenciable en\((a,b)\). Encuentra una matriz\(B\) tal que la función\({\bf x}=P{\bf y}\) sea una solución de\({\bf x}'=B{\bf x}\) on\((a,b)\).


    This page titled 10.2E: Sistemas Lineales de Ecuaciones Diferenciales (Ejercicios) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.