Saltar al contenido principal
LibreTexts Español

10.6E: Coeficiente Constante Sistemas Homogéneos III (Ejercicios)

  • Page ID
    114684
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Template:MathJaxTrench

    Q10.6.1

    En Ejercicios 10.6.1-10.6.16 encuentra la solución general.

    1. \({\bf y}'=\left[\begin{array}{cc}{-1}&{2}\\{-5}&{5}\end{array}\right]{\bf y}\)

    2. \({\bf y}'=\left[\begin{array}{cc}{-11}&{4}\\{-26}&{9}\end{array}\right]{\bf y}\)

    3. \({\bf y}'=\left[\begin{array}{cc}{1}&{2}\\{-4}&{5}\end{array}\right]{\bf y}\)

    4. \({\bf y}'=\left[\begin{array}{cc}{5}&{-6}\\{3}&{-1}\end{array}\right]{\bf y}\)

    5. \({\bf y}'=\left[\begin{array}{ccc}{3}&{-3}&{1}\\{0}&{2}&{2}\\{5}&{1}&{1}\end{array}\right]{\bf y}\)

    6. \({\bf y}'=\left[\begin{array}{ccc}{-3}&{3}&{1}\\{1}&{-5}&{-3}\\{-3}&{7}&{3}\end{array}\right]{\bf y}\)

    7. \({\bf y}'=\left[\begin{array}{ccc}{2}&{1}&{-1}\\{0}&{1}&{1}\\{1}&{0}&{1}\end{array}\right]{\bf y}\)

    8. \({\bf y}'=\left[\begin{array}{ccc}{-3}&{1}&{-3}\\{4}&{-1}&{2}\\{4}&{-2}&{3}\end{array}\right]{\bf y}\)

    9. \({\bf y}'=\left[\begin{array}{cc}{5}&{-4}\\{10}&{1}\end{array}\right]{\bf y}\)

    10. \({\bf y}'=\frac{1}{3}\left[\begin{array}{cc}{7}&{-5}\\{2}&{5}\end{array}\right]{\bf y}\)

    11. \({\bf y}'=\left[\begin{array}{cc}{3}&{2}\\{-5}&{1}\end{array}\right]{\bf y}\)

    12. \({\bf y}'=\left[\begin{array}{cc}{34}&{52}\\{-20}&{-30}\end{array}\right]{\bf y}\)

    13. \({\bf y}'=\left[\begin{array}{ccc}{1}&{1}&{2}\\{1}&{0}&{-1}\\{-1}&{-2}&{-1}\end{array}\right]{\bf y}\)

    14. \({\bf y}'=\left[\begin{array}{ccc}{3}&{-4}&{-2}\\{-5}&{7}&{-8}\\{-10}&{13}&{-8}\end{array}\right]{\bf y}\)

    15. \({\bf y}'=\left[\begin{array}{ccc}{6}&{0}&{-3}\\{-3}&{3}&{3}\\{1}&{-2}&{6}\end{array}\right]{\bf y}\)

    16. \({\bf y}'=\left[\begin{array}{ccc}{1}&{2}&{-2}\\{0}&{2}&{-1}\\{1}&{0}&{0}\end{array}\right]{\bf y}\)

    Q10.6.2

    En Ejercicios 10.6.17-10.6.24 resolver el problema de valor inicial.

    17. \({\bf y}'=\left[\begin{array}{cc}{4}&{-6}\\{3}&{-2}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{5}\\{2}\end{array}\right]\)

    18. \({\bf y}'=\left[\begin{array}{cc}{7}&{15}\\{-3}&{1}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{5}\\{1}\end{array}\right]\)

    19. \({\bf y}'=\left[\begin{array}{cc}{7}&{-15}\\{3}&{-5}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{17}\\{7}\end{array}\right]\)

    20. \({\bf y}'=\frac{1}{6}\left[\begin{array}{cc}{4}&{-2}\\{5}&{2}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{1}\\{-1}\end{array}\right]\)

    21. \({\bf y}'=\left[\begin{array}{ccc}{5}&{2}&{-1}\\{-3}&{2}&{2}\\{1}&{3}&{2}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{4}\\{0}\\{6}\end{array}\right]\)

    22. \({\bf y}'=\left[\begin{array}{ccc}{4}&{4}&{0}\\{8}&{10}&{-20}\\{2}&{3}&{-2}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{8}\\{6}\\{5}\end{array}\right]\)

    23. \({\bf y}'=\left[\begin{array}{ccc}{1}&{15}&{-15}\\{-6}&{18}&{-22}\\{-3}&{11}&{-15}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{15}\\{17}\\{10}\end{array}\right]\)

    24. \({\bf y}'=\left[\begin{array}{ccc}{4}&{-4}&{4}\\{-10}&{3}&{15}\\{2}&{-3}&{1}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{16}\\{14}\\{6}\end{array}\right]\)

    Q10.6.3

    25. Supongamos que una\(n\times n\) matriz\(A\) con entradas reales tiene un complejo eigenvalue\(\lambda=\alpha+i\beta\) (\(\beta\ne0\)) con autovector asociado\({\bf x}={\bf u}+i{\bf v}\), donde\({\bf u}\) y\({\bf v}\) tienen componentes reales. \({\bf u}\)Demuéstralo y ambos\({\bf v}\) son distintos de cero.

    26. Verifica que

    \[\bf y_1=e^{\alpha t}({\bf u}\cos\beta t-{\bf v}\sin\beta t) \quad \text{and}\quad \bf y_2=e^{\alpha t}({\bf u}\sin\beta t+{\bf v}\cos\beta t),\nonumber\]

    son las partes reales e imaginarias de

    \[e^{\alpha t}(\cos\beta t+i\sin\beta t)({\bf u}+i{\bf v}).\nonumber\]

    27. Mostrar que si los vectores\({\bf u}\) y no\({\bf v}\) son ambos\({\bf 0}\) y\(\beta\ne0\) luego las funciones vectoriales

    \[\bf y_1=e^{\alpha t}({\bf u}\cos\beta t-{\bf v}\sin\beta t)\quad \mbox{ and }\quad \bf y_2=e^{\alpha t}({\bf u}\sin\beta t+{\bf v}\cos\beta t)\nonumber\]

    son linealmente independientes en cada intervalo.

    28. Supongamos\({\bf u}=\left[\begin{array}{c}{u_{1}}\\{u_{2}}\end{array}\right]\) y no\({\bf v}=\left[\begin{array}{c}{v_{1}}\\{v_{2}}\end{array}\right]\) son ortogonales; es decir,\(({\bf u},{\bf v})\ne0\).

    1. Mostrar que la ecuación cuadrática\[({\bf u},{\bf v})k^2+(\|{\bf v}\|^2-\|{\bf u}\|^2)k-({\bf u},{\bf v})=0\nonumber\] tiene una raíz positiva\(k_1\) y una raíz negativa\(k_2=-1/k_1\).
    2. Vamos\({\bf u}_1^{(1)}={\bf u}-k_1{\bf v}\),\({\bf v}_1^{(1)}={\bf v}+k_1{\bf u}\),\({\bf u}_1^{(2)}={\bf u}-k_2{\bf v}\), y\({\bf v}_1^{(2)}={\bf v}+k_2{\bf u}\), para que\(({\bf u}_1^{(1)},{\bf v}_1^{(1)}) =({\bf u}_1^{(2)},{\bf v}_1^{(2)})=0\), a partir de la discusión dada anteriormente. Demostrar que\[{\bf u}_1^{(2)}={{\bf v}_1^{(1)}\over k_1} \quad \text{and} \quad {\bf v}_1^{(2)}=-{{\bf u}_1^{(1)}\over k_1}.\nonumber\]
    3. Let\({\bf U}_1\)\({\bf V}_1\),\({\bf U}_2\),, y\({\bf V}_2\) ser vectores unitarios en las direcciones de\({\bf u}_1^{(1)}\)\({\bf v}_1^{(1)}\),,\({\bf u}_1^{(2)}\), y\({\bf v}_1^{(2)}\), respectivamente. Concluir de (a) que\({\bf U}_2={\bf V}_1\) y\({\bf V}_2=-{\bf U}_1\), y que por lo tanto los ángulos en sentido contrario a las agujas del reloj de\({\bf U}_1\)\({\bf U}_2\) a\({\bf V}_1\) y de a\({\bf V}_2\) son ambos\(\pi/2\) o ambos\(-\pi/2\).

    Q10.6.4

    En Ejercicios 10.6.29-10.6.32 encontrar vectores\({\bf U}\) y\({\bf V}\) paralelos a los ejes de simetría de las trayectorias, y trazar algunas trayectorias típicas.

    29. \({\bf y}'=\left[\begin{array}{cc}{3}&{-5}\\{5}&{-3}\end{array}\right]{\bf y}\)

    30. \({\bf y}'=\left[\begin{array}{cc}{-15}&{10}\\{-25}&{15}\end{array}\right]{\bf y}\)

    31. \({\bf y}'=\left[\begin{array}{cc}{-4}&{8}\\{-4}&{4}\end{array}\right]{\bf y}\)

    32. \({\bf y}'=\left[\begin{array}{cc}{-3}&{-15}\\{3}&{3}\end{array}\right]{\bf y}\)

    Q10.6.5

    En Ejercicios 10.6.33-10.6.40 encontrar vectores\({\bf U}\) y\({\bf V}\) paralelos a los ejes de simetría de las trayectorias de sombra, y trazar una trayectoria típica.

    33. \({\bf y}'=\left[\begin{array}{cc}{-5}&{6}\\{-12}&{7}\end{array}\right]{\bf y}\)

    34. \({\bf y}'=\left[\begin{array}{cc}{5}&{-12}\\{6}&{-7}\end{array}\right]{\bf y}\)

    35. \({\bf y}'=\left[\begin{array}{cc}{4}&{-5}\\{9}&{-2}\end{array}\right]{\bf y}\)

    36. \({\bf y}'=\left[\begin{array}{cc}{-4}&{9}\\{-5}&{2}\end{array}\right]{\bf y}\)

    37. \({\bf y}'=\left[\begin{array}{cc}{-1}&{10}\\{-10}&{-1}\end{array}\right]{\bf y}\)

    38. \({\bf y}'=\left[\begin{array}{cc}{-1}&{-5}\\{20}&{-1}\end{array}\right]{\bf y}\)

    39. \({\bf y}'=\left[\begin{array}{cc}{-7}&{10}\\{-10}&{9}\end{array}\right]{\bf y}\)

    40. \({\bf y}'=\left[\begin{array}{cc}{-7}&{6}\\{-12}&{5}\end{array}\right]{\bf y}\)


    This page titled 10.6E: Coeficiente Constante Sistemas Homogéneos III (Ejercicios) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.