11.3E: Fourier Serie II (Ejercicios)
- Page ID
- 115079
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)En los Ejercicios 11.3.2, 11.3.3, 11.3.5, 11.3.9-11.3.12, 11.3.14-11.3.16, 11.3.18, 11.3.20, 11.3.21, 11.3.24, 11.3.25, 11.3.27, 11.3.30, 11.3.36, 11.3.37, y 11.3.43 gráfica\(f\) y algunas sumas parciales de las series requeridas. Si el intervalo es\([0,L]\), elija un valor específico de\(L\) para la gráfica.
Q11.3.1
En Ejercicios 11.3.1-11.3.10 encontramos la serie coseno de Fourier.
1. \(f(x)=x^2\);\([0,L]\)
2. \(f(x)=1-x\);\([0,1]\)
3. \(f(x)=x^2-2Lx\);\([0,L]\)
4. \(f(x)=\sin kx\)(\(k\ne\)entero);\([0,\pi]\)
5. \(f(x)= \left\{\begin{array}{cl} 1,&0\le x\le{L\over2}\\0,&{L\over2}<x<L; \end{array}\right.\)\([0,L]\)
6. \(f(x)=x^2-L^2\);\([0,L]\)
7. \(f(x)=(x-1)^2\);\([0,1]\)
8. \(f(x)=e^x\);\([0,\pi]\)
9. \(f(x)=x(L-x)\);\([0,L]\)
10. \(f(x)=x(x-2L)\);\([0,L]\)
Q11.3.2
En Ejercicios 11.3.11-11.3.17 encontrar la serie sinusoidal de Fourier
11. \(f(x)=1\);\([0,L]\)
12. \(f(x)=1-x\);\([0,1]\)
13. \(f(x)=\cos kx\)(\(k\ne\)entero);\([0,\pi]\)
14. \(f(x)= \left\{\begin{array}{cl} 1,&0\le x\le{L\over2}\\0,&{L\over2}<x<L; \end{array}\right.\)\([0,L]\)
15. \(f(x)= \left\{\begin{array}{cl} x,&0\le x\le{L\over2},\\L-x,&{L\over2}\le x\le L; \end{array}\right.\)\([0,L]\).
16. \(f(x)=x\sin x\);\([0,\pi]\)
17. \(f(x)=e^x\);\([0,\pi]\)
Q11.3.3
En Ejercicios 11.3.18-11.3.24 encontramos la serie mixta de coseno de Fourier.
18. \(f(x)=1\);\([0,L]\)
19. \(f(x)=x^2\);\([0,L]\)
20. \(f(x)=x\);\([0,1]\)
21. \(f(x)= \left\{\begin{array}{cl} 1,&0\le x\le{L\over2}\\0,&{L\over2}<x<L; \end{array}\right.\)\([0,L]\)
22. \(f(x)=\cos x\);\([0,\pi]\)
23. \(f(x)=\sin x\);\([0,\pi]\)
24. \(f(x)=x(L-x)\);\([0,L]\)
Q11.3.4
En Ejercicios 11.3.25-11.3.30 encontramos la serie sinusoidal mixta de Fourier.
25. \(f(x)=1\);\([0,L]\)
26. \(f(x)=x^2\);\([0,L]\)
27. \(f(x)= \left\{\begin{array}{cl} 1,&0\le x\le{L\over2}\\0,&{L\over2}<x<L; \end{array}\right.\)\([0,L]\)
28. \(f(x)=\cos x\);\([0,\pi]\)
29. \(f(x)=\sin x\);\([0,\pi]\)
30. \(f(x)=x(L-x)\);\([0,L]\).
Q11.3.5
En Ejercicios 11.3.31-11.3.34 usa el Teorema 11.3.5a para encontrar la serie coseno de Fourier de\(f\) on\([0,L]\).
31. \(f(x)=3x^2(x^2-2L^2)\)
32. \(f(x)=x^3(3x-4L)\)
33. \(f(x)=x^2(3x^2-8Lx+6L^2)\)
34. \(f(x)=x^2(x-L)^2\)
Q11.3.6
35.
- Demostrar Teorema 11.3.5b.
- Además de los supuestos del Teorema 11.3.5b, supongamos\(f''(0)=f''(L)=0\),\(f'''\) es continuo, y\(f^{(4)}\) es continuo por tramos en\([0,L]\). Demostrar que\[b_n={2L^3\over n^4\pi^4}\int_0^L f^{(4)}(x)\sin{n\pi x\over L}\,dx, \quad n\ge1.\nonumber\]
Q11.3.7
En Ejercicios 11.3.36-11.3.41 usa el Teorema 11.3.5b o, en su caso, Ejercicios 11.1.35b para encontrar la serie sinusoidal de Fourier de\(f\) on\([0,L]\).
36. \(f(x)=x(L-x)\)
37. \(f(x)=x^2(L-x)\)
38. \(f(x)=x(L^2-x^2)\)
39. \(f(x)=x(x^3-2Lx^2+L^3)\)
40. \(f(x)=x(3x^4-10L^2x^2+7L^4)\)
41. \(f(x)=x(3x^4-5Lx^3+2L^4)\)
Q11.3.8
42.
- Demostrar Teorema 11.3.5c.
- Además de los supuestos del Teorema 11.3.5c, supongamos\(f''(L)=0\),\(f''\) es continuo, y\(f'''\) es continuo por tramos en\([0,L]\). Demostrar que\[c_n={16L^2\over(2n-1)^3\pi^3}\int_0^L f'''(x)\sin{(2n-1)\pi x\over2L} \,dx,\quad n\ge1.\nonumber \]
Q11.3.9
En Ejercicios 11.3.43-11.3.49 usa el Teorema 11.3.5c, o en su caso, el Ejercicio 11.1.42b, para encontrar la serie mixta de coseno de Fourier de\(f\) on\([0,L]\).
43. \(f(x)=x^2(L-x)\)
44. \(f(x)=L^2-x^2\)
45. \(f(x)=L^3-x^3\)
46. \(f(x)=2x^3+3Lx^2-5L^3\)
47. \(f(x)=4x^3+3Lx^2-7L^3\)
48. \(f(x)=x^4-2Lx^3+L^4\)
49. \(f(x)=x^4-4Lx^3+6L^2x^2-3L^4\)
Q11.3.10
50.
- Demostrar Teorema 11.3.5d.
- Además de los supuestos del Teorema 11.3.5d, supongamos\(f''(0)=0\),\(f''\) es continuo, y\(f'''\) es continuo por tramos en\([0,L]\). Demostrar que\[d_n=-{16L^2\over(2n-1)^3\pi^3}\int_0^L f'''(x)\cos{(2n-1)\pi x\over2L} \,dx,\quad n\ge1. \nonumber\]
Q11.3.11
En los Ejercicios 11.3.51-11.3.56 usa el Teorema 11.3.5d o, en su caso, el Ejercicio 11.3.50b, para encontrar la serie sinusoidal mixta de Fourier del\(f\) on\([0,L]\).
51. \(f(x)=x(2L -x)\)
52. \(f(x)=x^2(3L-2x)\)
53. \(f(x)=(x-L)^3+L^3\)
54. \(f(x)=x(x^2-3L^2)\)
55. \(f(x)=x^3(3x-4L)\)
56. \(f(x)=x(x^3-2Lx^2+2L^3)\)
Q11.3.12
57. Mostrar que la serie mixta de coseno de Fourier de\(f\) on\([0,L]\) es la restricción a\([0,L]\) de la serie coseno de Fourier de
\[f_3(x)= \left\{\begin{array}{cl} f(x),&0\le x\le L,\\-f(2L-x),&L< x\le 2L \end{array}\right.\nonumber\]
encendido\([0,2L]\). Utilice esto para probar el Teorema 11.3.3.
58. Mostrar que la serie sinusoidal mixta de Fourier de\(f\) on\([0,L]\) es la restricción a\([0,L]\) de la serie sinusoidal de Fourier de
\[f_4(x)= \left\{\begin{array}{cl} f(x),&0\le x\le L,\\f(2L-x),&L< x\le 2L \end{array}\right.\nonumber\]
encendido\([0,2L]\). Usa esto para probar el Teorema 11.3.4.
59. Demostrar que la serie sinusoidal de Fourier de\(f\) on\([0,L]\) es la restricción a\([0,L]\) de la serie sinusoidal de Fourier de
\[f_3(x)= \left\{\begin{array}{cl} f(x),&0\le x\le L,\\-f(2L-x),&L< x\le 2L \end{array}\right.\nonumber\]
encendido\([0,2L]\).
60. Mostrar que la serie coseno de Fourier de\(f\) on\([0,L]\) es la restricción a\([0,L]\) de la serie coseno de Fourier de
\[f_4(x)= \left\{\begin{array}{cl} f(x),&0\le x\le L,\\f(2L-x),&L< x\le 2L \end{array}\right.\nonumber\]
encendido\([0,2L]\).