Saltar al contenido principal
LibreTexts Español

12.3E: Ecuación de Laplace en Coordenadas Rectangulares (Ejercicios)

  • Page ID
    114779
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Q12.3.1

    En Ejercicios 12.3.1-12.3.16 aplicar la definición desarrollada en el Ejemplo 12.3.1 para resolver el problema del valor límite. (Use el Teorema 11.3.5 donde aplique.) Grafica la superficie\(u=u(x,y)\)\(0\le x\le a\),,\(0\le y\le b\) para los Ejercicios 12.3.3, 12.3.9 y 12.3.13.

    1. \(u_{xx}+u_{yy}=0,\quad 0<x<1,\quad 0<y<1,\)
    \(u(x,0)=x(1-x),\quad u(x,1)=0,\quad 0\le x\le 1,\)
    \(u(0,y)=0,\quad u(1,y)=0,\quad 0\le y\le 1\)

    2. \(u_{xx}+u_{yy}=0,\quad 0<x<2,\quad 0<y<3,\)
    \(u(x,0)=x^2(2-x),\quad u(x,3)=0,\quad 0\le x\le 2,\)
    \(u(0,y)=0,\quad u(2,y)=0,\quad 0\le y\le 3\)

    3. \(u_{xx}+u_{yy}=0,\quad 0<x<2,\quad 0<y<2,\)
    \(u(x,0)= \left\{\begin{array}{cl} x,& 0\le x\le 1,\\ 2-x,&1\le x\le2, \end{array}\right. \quad u(x,2)=0,\quad 0\le x\le 2,\)
    \(u(0,y)=0,\quad u(2,y)=0,\quad 0\le y\le 2\)

    4. \(u_{xx}+u_{yy}=0,\quad 0<x<\pi,\quad 0<y<1,\)
    \(u(x,0)=x\sin x,\quad u(x,\pi)=0,\quad 0\le x\le \pi,\)
    \(u(0,y)=0,\quad u(\pi,y)=0,\quad 0\le y\le 1\)

    5. \(u_{xx}+u_{yy}=0,\quad 0<x<3,\quad 0<y<2,\)
    \(u(x,0)=0,\quad u_y(x,2)=x^2,\quad 0\le x\le 3,\)
    \(u_x(0,y)=0,\quad u_x(3,y)=0,\quad 0\le y\le 2\)

    6. \(u_{xx}+u_{yy}=0,\quad 0<x<1,\quad 0<y<2,\)
    \(u(x,0)=0,\quad u_y(x,2)=1-x,\quad 0\le x\le 1,\)
    \(u_x(0,y)=0,\quad u_x(1,y)=0,\quad 0\le y\le 2\)

    7. \(u_{xx}+u_{yy}=0,\quad 0<x<2,\quad 0<y<2,\)
    \(u(x,0)=0,\quad u_y(x,2)=x^2-4,\quad 0\le x\le 2,\)
    \(u_x(0,y)=0,\quad u_x(2,y)=0,\quad 0\le y\le 2\)

    8. \(u_{xx}+u_{yy}=0,\quad 0<x<1,\quad 0<y<1,\)
    \(u(x,0)=0,\quad u_y(x,1)=(x-1)^2,\quad 0\le x\le 1,\)
    \(u_x(0,y)=0,\quad u_x(1,y)=0,\quad 0\le y\le 1\)

    9. \(u_{xx}+u_{yy}=0,\quad 0<x<3,\quad 0<y<2,\)
    \(u(x,0)=0,\quad u_y(x,2)=0,\quad 0\le x\le 3,\)
    \(u(0,y)=y(4-y),\quad u_x(3,y)=0,\quad 0\le y\le 2\)

    10. \(u_{xx}+u_{yy}=0,\quad 0<x<2,\quad 0<y<1,\)
    \(u(x,0)=0,\quad u_y(x,1)=0,\quad 0\le x\le 2,\)
    \(u(0,y)=y^2(3-2y),\quad u_x(2,y)=0,\quad 0\le y\le 1\)

    11. \(u_{xx}+u_{yy}=0,\quad 0<x<2,\quad 0<y<2,\)
    \(u(x,0)=0,\quad u_y(x,2)=0,\quad 0\le x\le 2,\)
    \(u(0,y)=(y-2)^3+8,\quad u_x(2,y)=0,\quad 0\le y\le 2\)

    12. \(u_{xx}+u_{yy}=0,\quad 0<x<3,\quad 0<y<1,\)
    \(u(x,0)=0,\quad u_y(x,1)=0,\quad 0\le x\le 3,\)
    \(u(0,y)=y(2y^2-9y+12),\quad u_x(3,y)=0,\quad 0\le y\le 1\)

    13. \(u_{xx}+u_{yy}=0,\quad 0<x<1,\quad 0<y<\pi,\)
    \(u_y(x,0)=0,\quad u(x,\pi)=0,\quad 0\le x\le 1,\)
    \(u_x(0,y)=0,\quad u_x(1,y)=\sin y,\quad 0\le y\le \pi\)

    14. \(u_{xx}+u_{yy}=0,\quad 0<x<2,\quad 0<y<3,\)
    \(u_y(x,0)=0,\quad u(x,3)=0,\quad 0\le x\le 2,\)
    \(u_x(0,y)=0,\quad u_x(2,y)=y(3-y),\quad 0\le y\le 3\)

    15. \(u_{xx}+u_{yy}=0,\quad 0<x<1,\quad 0<y<\pi,\)
    \(u_y(x,0)=0,\quad u(x,\pi)=0,\quad 0\le x\le 1,\)
    \(u_x(0,y)=0,\quad u_x(1,y)=\pi^2-y^2,\quad 0\le y\le \pi\)

    16. \(u_{xx}+u_{yy}=0,\quad 0<x<1,\quad 0<y<1,\)
    \(u_y(x,0)=0,\quad u(x,1)=0,\quad 0\le x\le 1,\)
    \(u_x(0,y)=0,\quad u_x(1,y)=1-y^3,\quad 0\le y\le 1\)

    Q12.3.2

    En Ejercicios 12.3.17-12.3.28 definir la solución formal de\[u_{xx}+u_{yy}=0,\quad 0<x<a,\quad 0<y<b\nonumber \] que satisfaga las condiciones límite dadas para general\(a, b\), y\(f\) o\(g\). A continuación, resolver el problema del valor límite para el especificado\(a, b\), y\(f\) o\(g\). (Use el Teorema 11.3.5 donde aplique.) Grafica la superficie\(u = u(x, y),\: 0 ≤ x ≤ a,\: 0 ≤ y ≤ b\) para los Ejercicios 12.3.17, 12.3.23 y 12.3.25.

    17. \(u(x,0)=0,\quad u(x,b)=f(x),\quad 0<x<a,\\ u(0,y)=0,\quad u(a,y)=0,\quad 0<y<b \\ a=3,\quad b=2,\quad f(x)=x(3-x)\)

    18. \(u(x,0)=f(x),\quad u(x,b)=0,\quad 0<x<a,\\ u_x(0,y)=0,\quad u_x(a,y)=0,\quad 0<y<b\\ a=2,\quad b=1,\quad f(x)=x^2(x-2)^2\)

    19. \(u(x,0)=f(x),\quad u(x,b)=0,\quad 0<x<a,\\ u_x(0,y)=0,\quad u(a,y)=0,\quad 0<y<b\\ a=1,\quad b=2,\quad f(x)=3x^3-4x^2+1\)

    20. \(u(x,0)=f(x),\quad u(x,b)=0,\quad 0<x<a,\\ u(0,y)=0,\quad u_x(a,y)=0,\quad 0<y<b\\ a=3,\quad b=2,\quad f(x)=x(6-x)\)

    21. \(u(x,0)=f(x),\quad u_y(x,b)=0,\quad 0<x<a,\\ u(0,y)=0,\quad u(a,y)=0,\quad 0<y<b\\ a=\pi ,\quad b=2,\quad f(x)=x(\pi^2-x^2)\)

    22. \(u_y(x,0)=0,\quad u(x,b)=f(x),\quad 0<x<a,\\ u_x(0,y)=0,\quad u_x(a,y)=0,\quad 0<y<b\\ a=\pi ,\quad b=1,\quad f(x)=x^2(x-\pi)^2\)

    23. \(u_y(x,0)=f(x),\quad u(x,b)=0,\quad 0<x<a,\\ u(0,y)=0,\quad u(a,y)=0,\quad 0<y<b\\ a=\pi,\quad b=1,\quad (f(x)= \left\{\begin{array}{cl} x,&0\le x\le{\pi\over2},\\\pi-x,&{\pi\over2}\le x\le \pi \end{array}\right.\)

    24. \(u(x,0)=0,\quad u(x,b)=0,\quad 0<x<a,\\ u_x(0,y)=0,\quad u(a,y)=g(y),\quad 0<y<b\\ a=1,\quad b=1,\quad g(y)=y(y^3-2y^2+1)\)

    25. \(u_y(x,0)=0,\quad u(x,b)=0,\quad 0<x<a,\\ u_x(0,y)=0,\quad u(a,y)=g(y),\quad 0<y<b\\ a=2,\quad b=2,\quad g(y)=4-y^2\)

    26. \(u(x,0)=0,\quad u(x,b)=0,\quad 0<x<a,\\ u_x(0,y)=0,\quad u_x(a,y)=g(y),\quad 0<y<b\\ a=1,\quad b=4,\quad (g(y)= \left\{\begin{array}{cl} y,&0\le y\le2,\\4-y,&2\le y\le 4 \end{array}\right.\)

    27. \(u(x,0)=0,\quad u_y(x,b)=0,\quad 0<x<a,\\ u_x(0,y)=g(y),\quad u_x(a,y)=0,\quad 0<y<b\\ a=1,\quad b=\pi ,\quad g(y)=y^2(3\pi-2y)\)

    28. \(u_y(x,0)=0,\quad u_y(x,b)=0,\quad 0<x<a,\\ u_x(0,y)=g(y),\quad u(a,y)=0,\quad 0<y<b\\ a=2,\quad b=\pi ,\quad g(y)=y\)

    Q12.3.3

    En Ejercicios 12.3.29-12.3.34 definir la solución formal acotada de\[u_{xx}+u_{yy}=0,\quad 0<x<a,\quad y>0\nonumber\] que satisfaga las condiciones límite dadas para general\(a\) y\(f\). A continuación, resolver el problema del valor límite para el especificado\(a\) y\(f\).

    29. \(u(x,0)=f(x),\quad 0<x<a\),
    \(u_x(0,y)=0,\quad u_x(a,y)=0,\quad y>0\)
    \(a=\pi\)\(f(x)=x^2(3\pi-2x)\)

    30. \(u(x,0)=f(x),\quad 0<x<a\),
    \(u_x(0,y)=0,\quad u(a,y)=0,\quad y>0\)
    \(a=3\),\(f(x)=9-x^2\)

    31. \(u(x,0)=f(x),\quad 0<x<a\),
    \(u(0,y)=0,\quad u_x(a,y)=0,\quad y>0\)
    \(a=\pi\),\(f(x)=x(2\pi-x)\)

    32. \(u_y(x,0)=f(x),\quad 0<x<a\),
    \(u(0,y)=0,\quad u(a,y)=0,\quad y>0\)
    \(a=\pi\),\(f(x)=x^2(\pi-x)\)

    33. \(u_y(x,0)=f(x),\quad 0<x<a\),
    \(u_x(0,y)=0,\quad u(a,y)=0,\quad y>0\)
    \(a=7\),\(f(x)=x(7-x)\)

    34. \(u_y(x,0)=f(x),\quad 0<x<a\),
    \(u(0,y)=0,\quad u_x(a,y)=0,\quad y>0\)
    \(a=5\),\(f(x)=x(5-x)\)

    Q12.3.4

    35. Definir la solución formal del problema de Dirichlet

    \[\begin{array}{c} u_{xx}+u_{yy}=0,\quad 0<x<a,\quad 0<y<b,\\ u(x,0)=f_0(x),\quad u(x,b)=f_1(x),\quad 0\le x\le a,\\ u(0,y)=g_0(y),\quad u(a,y)=g_1(y),\quad 0\le y\le b \end{array}\nonumber \]

    36. Demostrar que el problema de Neumann

    \[\begin{array}{c} u_{xx}+u_{yy}=0,\quad 0<x<a,\quad 0<y<b,\\ u_y(x,0)=f_0(x),\quad u_y(x,b)=f_1(x),\quad 0\le x\le a,\\ u_x(0,y)=g_0(y),\quad u_x(a,y)=g_1(y),\quad 0\le y\le b \end{array}\nonumber \]

    no tiene solución a menos que

    \[\int_0^af_0(x)\,dx= \int_0^af_1(x)\,dx= \int_0^bg_0(y)\,dy= \int_0^bg_1(y)\,dy=0.\nonumber \]

    En este caso tiene infinitamente muchas soluciones formales. Encuéntralos.

    37. En este ejercicio tomarlo como dado que la serie infinita\(\sum_{n=1}^\infty n^pe^{-qn}\) converge para todos\(p\) si\(q>0\), y, en su caso, utilizar la prueba de comparación para la convergencia absoluta de una serie infinita.

    Let

    \[u(x,y)=\sum_{n=1}^\infty \alpha_n {\sinh n\pi(b-y)/a\over\sinh n\pi b/a} \sin{n\pi x\over a},\nonumber \]

    donde

    \[\alpha_n={2\over a}\int_0^a f(x)\sin{n\pi x\over a}\,dx\nonumber \]

    y\(f\) es poco uniforme en\([0,a]\).

    1. Verificar las aproximaciones\[{\sinh n\pi(b-y)/a\over\sinh n\pi b/a}\approx e^{-n\pi y/a},\quad y<b, \tag{A}\] y\[{\cosh n\pi(b-y)/a\over\sinh n\pi b/a}\approx e^{-n\pi y/a},\quad y<b \tag{B}\] para grandes\(n\).
    2. Use (A) para mostrar que\(u\) se define para\((x,y)\) tal que\(0<y<b\).
    3. Para fijo\(y\) en\((0,b)\), use (A) y Teorema 12.1.2 con\(z=x\) para mostrar que\[u_x(x,y)={\pi\over a}\sum_{n=1}^\infty n\alpha_n {\sinh n\pi(b-y)/a\over\sinh n\pi b/a} \cos{n\pi x\over a},\quad -\infty<x< \infty.\nonumber \]
    4. Partiendo del resultado de (b), use (A) y el Teorema 12.1.2 con\(z=x\) para demostrar que, para una entrada fija\(y\)\((0,b)\),\[u_{xx}(x,y)=-{\pi^2\over a^2}\sum_{n=1}^\infty n^2\alpha_n {\sinh n\pi(b-y)/a\over\sinh n\pi b/a} \sin{n\pi x\over a},\quad -\infty<x< \infty.\nonumber \]
    5. Para fijo pero arbitrario\(x\), use (B) y Teorema 12.1.2 con\(z=y\) para mostrar que\[u_y(x,y)=-{\pi\over a}\sum_{n=1}^\infty n\alpha_n {\cosh n\pi(b-y)/a\over\sinh n\pi b/a} \sin{n\pi x\over a}\nonumber \] si\(0<y_0<y<b\), donde\(y_0\) es un número arbitrario en\((0,b)\). Entonces argumentan que dado que se\(y_0\) puede elegir arbitrariamente pequeño, la conclusión se sostiene para todos\(y\) en\((0,b)\).
    6. Partiendo del resultado de (e), use (A) y Teorema 12.1.2 para mostrar que\[u_{yy}(x,y)={\pi^2\over a^2}\sum_{n=1}^\infty n^2\alpha_n {\sinh n\pi(b-y)/a\over\sinh n\pi b/a} \sin{n\pi x\over a},\quad 0<y<b.\nonumber\]
    7. Concluir que\(u\) satisface la ecuación de Laplace para todos\((x,y)\) tales que\(0<y<b\).
      Al aplicar repetidamente los argumentos en (c) — (f), se puede demostrar que se\(u\) puede diferenciar término por término cualquier número de veces con respecto a\(x\) y/o\(y\) si\(0<y<b\).

    This page titled 12.3E: Ecuación de Laplace en Coordenadas Rectangulares (Ejercicios) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.