Saltar al contenido principal
LibreTexts Español

6.5: El Área de un Trapezoide

  • Page ID
    114661
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    En la Figura\(\PageIndex{1}\),\(b_1\) y\(b_2\) son las bases del trapecio\(ABCD\) y\(h\) es la altura o altitud. La fórmula para el área se da en el siguiente teorema:

    Screen Shot 2020-12-28 a las 11.40.42 AM.png
    Figura\(\PageIndex{1}\): Trapezoide\(ABCD\) con bases\(b_1\) y\(b_2\) y altura\(h\).
    Teorema\(\PageIndex{1}\)

    El área de un trapecio es igual a la mitad del producto de su altura y la suma de sus bases.

    \[A = \dfrac{1}{2} h(b_1 + b_2)\]

    Prueba

    En Figura\(\PageIndex{1}\) dibujar\(BD\) (ver Figura\(\PageIndex{2}\)). Tenga en cuenta que\(CD = b_2\) es la base y\(BF = h\) es la altura de\(\triangle BCD\). Área de trapecio\(ABCD =\) Área de\(\triangle ABD\) + Área de\(\triangle BCD\) =\(\dfrac{1}{2} b_1h + \dfrac{1}{2} b_2 h = \dfrac{1}{2} h(b_1 + b_2)\).

    Screen Shot 2020-12-28 a las 11.46.50 AM.png
    Figura\(\PageIndex{2}\): Dibujar\(BD\). \(CD\)es la base y\(BF\) es la altura de\(\triangle BCD\).
    Ejemplo\(\PageIndex{1}\)

    Encuentra la zona:

    Screen Shot 2020-12-28 a las 11.42.45 AM.png

    Solución

    \(A = \dfrac{1}{2} h(b_1 + b_2)= \dfrac{1}{2} (6)(28 + 16) = \dfrac{1}{2} (6)(44) = 132\).

    Respuesta:\(A = 132\).

    Ejemplo\(\PageIndex{2}\)

    Encuentra el área y perímetro:

    Screen Shot 2020-12-28 a las 11.48.05 AM.png

    Solución

    Dibujar alturas\(DE\) y\(CF\) (Figura\(\PageIndex{3}\)). \(\triangle ADE\)es\(30^{\circ}-60^{\circ}-90^{\circ}\) triángulo. Entonces\(AE\) = pierna corta =\(\dfrac{1}{2}\) hipotenusa =\(\dfrac{1}{2}(10) = 5\), y\(DE\) = pierna larga = (pierna corta) (\(\sqrt{3}\)) =\(5\sqrt{3}\). \(CDEF\)es un rectángulo así\(EF = CD = 10\). Por lo tanto\(BF = AB - EF = 22 -10 - 5 = 7\). Vamos\(x = BC\).

    Screen Shot 2020-12-28 a las 11.50.59 AM.png
    Figura\(\PageIndex{3}\): Dibujar alturas\(DE\) y\(CF\).

    \[\begin{array} {rcl} {\text{CF}^2 + \text{BF}^2} & = & {\text{BC}^2} \\ {(5\sqrt{3})^2 + 7^2} & = & {x^2} \\ {75 + 49} & = & {x^2} \\ {124} & = & {x^2} \\ {x} & = & {\sqrt{124} = \sqrt{4} \sqrt{31} = 2\sqrt{31}} \end{array}\]

    Área =\(\dfrac{1}{2} h(b_1 + b_2) = \dfrac{1}{2} (5\sqrt{3}) (22 + 10) = \dfrac{1}{2} (5\sqrt{3})(32) = 80\sqrt{3}\).

    Perímetro =\(22 + 10 + 10 + 2\sqrt{31} = 42 + 2\sqrt{31}\).

    Respuesta:\(A = 80\sqrt{3}\),\(P = 42 + 2\sqrt{31}\).

    Problemas

    1 - 2. Encuentra el área de\(ABCD\):

    1.

    Screen Shot 2020-12-28 a las 11.57.18 AM.png

    2.

    Screen Shot 2020-12-28 a las 11.57.49 AM.png

    3 - 12. Encuentra el área y perímetro de\(ABCD\):

    3.

    Screen Shot 2020-12-28 a las 11.58.07 AM.png

    4.

    Screen Shot 2020-12-28 a las 11.58.23 AM.png

    5.

    Screen Shot 2020-12-28 a las 11.58.42 AM.png

    6.

    Screen Shot 2020-12-28 a las 11.58.55 AM.png

    7.

    Screen Shot 2020-12-28 a las 11.59.10 AM.png

    8.

    Screen Shot 2020-12-28 a las 11.59.28 AM.png

    9.

    Screen Shot 2020-12-28 a las 11.59.44 AM.png

    10.

    Screen Shot 2020-12-28 a las 12.00.10 PM.png

    11.

    Screen Shot 2020-12-28 a las 12.00.28 PM.png

    12.

    Screen Shot 2020-12-28 a las 12.00.42 PM.png

    13 - 14. Encuentra el área y perímetro a la décima más cercana de\(ABCD\):

    13.

    Screen Shot 2020-12-28 a las 12.00.58 PM.png

    14.

    Screen Shot 2020-12-28 a las 12.01.15 PM.png

    15. Encuentra\(x\) si el área de\(ABCD\) es 50:

    Screen Shot 2020-12-28 a las 12.01.30 PM.png

    16. Encuentra\(x\) si el área de\(ABCD\) es 30:

    Screen Shot 2020-12-28 a las 12.01.53 PM.png


    This page titled 6.5: El Área de un Trapezoide is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Henry Africk (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.