4.2: Geometría Transformacional Analítica
- Page ID
- 117372
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)El objetivo es desarrollar fórmulas matriciales para isometrías arbitrarias utilizando las fórmulas básicas de isometría que se dan a continuación como bloques de construcción.
Se escribe un punto con coordenadas normales (x, y) en coordenadas homogéneas (x, y, 1).
Traducir | T (x, y, 1) =\(\begin{bmatrix}1 & 0&a \\ 0 & 1&b \\0&0&1 \end{bmatrix}\)\(\begin{bmatrix}x\\ y \\1 \end{bmatrix}\) |
Reflejar sobre el eje y | M y (x, y, 1) =\(\begin{bmatrix}-1 & 0&0 \\ 0 & 1&0 \\0&0&1 \end{bmatrix}\) (\ begin {bmatrix} x\\ y\\ 1\ end {bmatrix}\) |
Reflejar sobre el eje x | M x (x, y, 1) =\(\begin{bmatrix}1 & 0&0 \\ 0 & -1&0 \\0&0&1 \end{bmatrix}\) (\ begin {bmatrix} x\\ y\\ 1\ end {bmatrix}\) |
Rotar en sentido antihorario sobre el origen | R φ (x, y, 1) =\(\begin{bmatrix}cosφ & -sinφ &0 \\ sinφ & cosφ &0 \\0&0&1 \end{bmatrix}\) (\ begin {bmatrix} x\\ y\\ 1\ end {bmatrix}\) |
Objetivo: desarrollar una rotación alrededor de un punto [x 0, y 0] T usando los siguientes pasos.
- Encuentra una transformación que mueva [x 0, y 0] T al origen.
- Encuentra una transformación que mueve [x 0, y 0] T al origen y luego gira por φ.
- Encuentra una transformación que mueve [x 0, y 0] T al origen, rota por φ, luego devuelve el origen a [x 0, y 0] T.
- Estado, usando notación matricial, una transformación que gira el plano alrededor de un punto [x 0, y 0] T por φ.
Objetivo: desarrollar una reflexión sobre una línea vertical dada por x=a usando los siguientes pasos.
- Encuentra una transformación que mueva la línea x=a al eje y.
- Encuentre una transformación que mueva la línea x=a al eje y, luego, refleje el plano sobre el eje y.
- Encuentre una transformación que mueva la línea x=a al eje y, refleje el plano sobre el eje y, luego devuelva el eje y a la línea x=a.
- Estado, usando notación matricial, una transformación que refleja sobre una línea vertical arbitraria x=a.
Objetivo: desarrollar una reflexión sobre una línea horizontal dada por y=b usando los siguientes pasos.
- Encuentra una transformación que mueva la línea y=b al eje -eje.
- Encuentre una transformación que mueva la línea y=b al eje x, luego refleje el plano sobre el eje x.
- Encuentre una transformación que mueva la línea y=b al eje x, refleje el plano sobre el eje x, luego devuelva el eje x a la línea y=b.
- Estado, usando notación matricial, una transformación que refleja sobre una línea horizontal arbitraria y=b.
Desarrollar una reflexión sobre una línea arbitraria (no vertical).