Saltar al contenido principal

# 18.B: Tabla de Integrales

• Edwin “Jed” Herman & Gilbert Strang
• OpenStax

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Integrales Básicas

1. $$\quad \displaystyle ∫u^n\,du=\frac{u^{n+1}}{n+1}+C,\quad n≠−1$$

2. $$\quad \displaystyle ∫\frac{du}{u} =\ln |u|+C$$

3. $$\quad \displaystyle ∫e^u\,du=e^u+C$$

4. $$\quad \displaystyle ∫a^u\,du=\frac{a^u}{\ln a}+C$$

5. $$\quad \displaystyle ∫\sin u\,du=−\cos u+C$$

6. $$\quad \displaystyle ∫\cos u\,du=\sin u+C$$

7. $$\quad \displaystyle ∫\sec^2u\,du=\tan u+C$$

8. $$\quad \displaystyle ∫\csc^2u\,du=−\cot u+C$$

9. $$\quad \displaystyle ∫\sec u\tan u\,du=\sec u+C$$

10. $$\quad \displaystyle ∫\csc u\cot u\,du=−\csc u+C$$

11. $$\quad \displaystyle ∫\tan u\,du=\ln |\sec u|+C$$

12. $$\quad \displaystyle ∫\cot u\,du=\ln |\sin u|+C$$

13. $$\quad \displaystyle ∫\sec u\,du=\ln |\sec u+\tan u|+C$$

14. $$\quad \displaystyle ∫\csc u\,du=\ln |\csc u−\cot u|+C$$

15. $$\quad \displaystyle ∫\frac{du}{\sqrt{a^2−u^2}}=\sin^{−1}\left(\frac{u}{a}\right)+C$$

16. $$\quad \displaystyle ∫\frac{du}{a^2+u^2}=\frac{1}{a}\tan^{−1}\left(\frac{u}{a}\right)+C$$

17. $$\quad \displaystyle ∫\frac{du}{u\sqrt{u^2−a^2}}=\frac{1}{a}\sec^{−1}\frac{|u|}{a}+C$$

## Integrales trigonométricas

18. $$\quad \displaystyle ∫\sin^2u\,du=\frac{1}{2}u−\frac{1}{4}\sin 2u+C$$

19. $$\quad \displaystyle ∫\cos^2 u\,du=\frac{1}{2}u+\frac{1}{4}\sin 2u+C$$

20. $$\quad \displaystyle ∫\tan^2 u\,du=\tan u−u+C$$

21. $$\quad \displaystyle ∫\cot ^2 u\,du=−\cot u−u+C$$

22. $$\quad \displaystyle ∫\sin^3 u\,du=−\frac{1}{3}(2+\sin^2u)\cos u+C$$

23. $$\quad \displaystyle ∫\cos^3 u\,du=\frac{1}{3}(2+\cos^2 u)\sin u+C$$

24. $$\quad \displaystyle ∫\tan^3 u\,du=\frac{1}{2}\tan^2 u+\ln |\cos u|+C$$

25. $$\quad \displaystyle ∫\cot^3 u\,du=−\frac{1}{2}\cot^2 u−\ln |\sin u|+C$$

26. $$\quad \displaystyle ∫\sec^3 u\,du=\frac{1}{2}\sec u\tan u+\frac{1}{2}\ln |\sec u+\tan u|+C$$

27. $$\quad \displaystyle ∫\csc^3 u\,du=−\frac{1}{2}\csc u\cot u+\frac{1}{2}\ln |\csc u−\cot u|+C$$

28. $$\quad \displaystyle ∫\sin^n u\,du=\frac{-1}{n}\sin^{n−1}u\cos u+\frac{n−1}{n}∫\sin^{n−2}u\,du$$

29. $$\quad \displaystyle ∫\cos^n u\,du=\frac{1}{n}\cos^{n−1} u\sin u+\frac{n−1}{n}∫\cos^{n−2}u\,du$$

30. $$\quad \displaystyle ∫\tan^n u\,du=\frac{1}{n-1}\tan^{n−1} u−∫\tan^{n−2} u\,du$$

31. $$\quad \displaystyle ∫\cot^n u\,du=\frac{-1}{n-1}\cot^{n−1}u−∫\cot^{n−2}u\,du$$

32. $$\quad \displaystyle ∫\sec^n u\,du=\frac{1}{n-1}\tan u\sec^{n−2}u+\frac{n-2}{n-1}∫\sec^{n−2}u\,du$$

33. $$\quad \displaystyle ∫\csc^n u\,du=\frac{-1}{n-1}\cot u\csc^{n−2}u+\frac{n-2}{n-1}∫\csc^{n−2}u\,du$$

34. $$\quad \displaystyle ∫\sin au\sin bu\,du=\frac{\sin (a−b)u}{2(a−b)}−\frac{\sin (a+b)u}{2(a+b)}+C$$

35. $$\quad \displaystyle ∫\cos au\cos bu\,du=\frac{\sin (a−b)u}{2(a−b)}+\frac{\sin (a+b)u}{2(a+b)}+C$$

36. $$\quad \displaystyle ∫\sin au\cos bu\,du=−\frac{\cos (a−b)u}{2(a−b)}−\frac{\cos (a+b)u}{2(a+b)}+C$$

37. $$\quad \displaystyle ∫u\sin u\,du=\sin u−u\cos u+C$$

38. $$\quad \displaystyle ∫u\cos u\,du=\cos u+u\sin u+C$$

39. $$\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du$$

40. $$\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du$$

41. \quad \begin{align*} \displaystyle ∫\sin^n u\cos^m u\,du = −\frac{\sin^{n−1}u\cos^{m+1}u}{n+m}+\frac{n−1}{n+m}∫\sin^{n−2}u\cos^m u\,du \\[4pt] =\frac{\sin^{n+1}u\cos^{m−1}u}{n+m}+\frac{m−1}{n+m}∫\sin^n u\cos^{m−2}u \,du \end{align*}

## Integrales exponenciales y logarítmicas

42. $$\quad \displaystyle ∫ue^{au}\,du=\frac{1}{a^2}(au−1)e^{au}+C$$

43. $$\quad \displaystyle ∫u^ne^{au}\,du=\frac{1}{a}u^ne^{au}−\frac{n}{a}∫u^{n−1}e^{au}\,du$$

44. $$\quad \displaystyle ∫e^{au}\sin bu\,du=\frac{e^{au}}{a^2+b^2}(a\sin bu−b\cos bu)+C$$

45. $$\quad \displaystyle ∫e^{au}\cos bu\,du=\frac{e^{au}}{a^2+b^2}(a\cos bu+b\sin bu)+C$$

46. $$\quad \displaystyle ∫\ln u\,du=u\ln u−u+C$$

47. $$\quad \displaystyle ∫u^n\ln u\,du=\frac{u^{n+1}}{(n+1)^2}[(n+1)\ln u−1]+C$$

48. $$\quad \displaystyle ∫\frac{1}{u\ln u}\,du=\ln |\ln u|+C$$

## Integrales hiperbólicas

49. $$\quad \displaystyle ∫\sinh u\,du=\cosh u+C$$

50. $$\quad \displaystyle ∫\cosh u\,du=\sinh u+C$$

51. $$\quad \displaystyle ∫\tanh u\,du=\ln \cosh u+C$$

52. $$\quad \displaystyle ∫\coth u\,du=\ln |\sinh u|+C$$

53. $$\quad \displaystyle ∫\text{sech}\,u\,du=\tan^{−1}|\sinh u|+C$$

54. $$\quad \displaystyle ∫\text{csch}\,u\,du=\ln ∣\tanh\frac{1}{2}u∣+C$$

55. $$\quad \displaystyle ∫\text{sech}^2 u\,du=\tanh \,u+C$$

56. $$\quad \displaystyle ∫\text{csch}^2 u\,du=−\coth \,u+C$$

57. $$\quad \displaystyle ∫\text{sech} \,u\tanh u\,du=−\text{sech} \,u+C$$

58. $$\quad \displaystyle ∫\text{csch} \,u\coth u\,du=−\text{csch} \,u+C$$

## Integrales trigonométricas inversas

59. $$\quad \displaystyle ∫\sin^{-1}u\,du=u\sin^{-1}u+\sqrt{1−u^2}+C$$

60. $$\quad \displaystyle ∫\cos^{-1}u\,du=u\cos^{-1}u−\sqrt{1−u^2}+C$$

61. $$\quad \displaystyle ∫\tan^{-1}u\,du=u\tan^{-1}u−\frac{1}{2}\ln (1+u^2)+C$$

62. $$\quad \displaystyle ∫u\sin^{-1}u\,du=\frac{2u^2−1}{4}\sin^{-1}u+\frac{u\sqrt{1−u^2}}{4}+C$$

63. $$\quad \displaystyle ∫u\cos^{-1}u\,du=\frac{2u^2−1}{4}\cos^{-1}u-\frac{u\sqrt{1−u^2}}{4}+C$$

64. $$\quad \displaystyle ∫u\tan^{-1}u\,du=\frac{u^2+1}{2}\tan^{-1}u−\frac{u}{2}+C$$

65. $$\quad \displaystyle ∫u^n\sin^{-1}u\,du=\frac{1}{n+1}\left[u^{n+1}\sin^{-1}u−∫\frac{u^{n+1}\,du}{\sqrt{1−u^2}}\right],\quad n≠−1$$

66. $$\quad \displaystyle ∫u^n\cos^{-1}u\,du=\frac{1}{n+1}\left[u^{n+1}\cos^{-1}u+∫\frac{u^{n+1}\,du}{\sqrt{1−u^2}}\right],\quad n≠−1$$

67. $$\quad \displaystyle ∫u^n\tan^{-1}u\,du=\frac{1}{n+1}\left[u^{n+1}\tan^{-1}u−∫\frac{u^{n+1}\,du}{1+u^2}\right],\quad n≠−1$$

## Integrales que involucran un2 + u2, a > 0

68. $$\quad \displaystyle ∫\sqrt{a^2+u^2}\,du=\frac{u}{2}\sqrt{a^2+u^2}+\frac{a^2}{2}\ln \left(u+\sqrt{a^2+u^2}\right)+C$$

69. $$\quad \displaystyle ∫u^2\sqrt{a^2+u^2}\,du=\frac{u}{8}(a^2+2u^2)\sqrt{a^2+u^2}−\frac{a^4}{8}\ln \left(u+\sqrt{a^2+u^2}\right)+C$$

70. $$\quad \displaystyle ∫\frac{\sqrt{a^2+u^2}}{u}\,du=\sqrt{a^2+u^2}−a\ln \left|\frac{a+\sqrt{a^2+u^2}}{u}\right|+C$$

71. $$\quad \displaystyle ∫\frac{\sqrt{a^2+u^2}}{u^2}\,du=−\frac{\sqrt{a^2+u^2}}{u}+\ln \left(u+\sqrt{a^2+u^2}\right)+C$$

72. $$\quad \displaystyle ∫\frac{du}{\sqrt{a^2+u^2}}=\ln \left(u+\sqrt{a^2+u^2}\right)+C$$

73. $$\quad \displaystyle ∫\frac{u^2}{\sqrt{a^2+u^2}}\,du=\frac{u}{2}\left(\sqrt{a^2+u^2}\right)−\frac{a^2}{2}\ln \left(u+\sqrt{a^2+u^2}\right)+C$$

74. $$\quad \displaystyle ∫\frac{du}{u\sqrt{a^2+u^2}}=\frac{−1}{a}\ln \left|\frac{\sqrt{a^2+u^2}+a}{u}\right|+C$$

75. $$\quad \displaystyle ∫\frac{du}{u^2\sqrt{a^2+u^2}}=−\frac{\sqrt{a^2+u^2}}{a^2u}+C$$

76. $$\quad \displaystyle ∫\frac{du}{\left(a^2+u^2\right)^{3/2}}=\frac{u}{a^2\sqrt{a^2+u^2}}+C$$

## Integrales que involucran u2 − a2, a > 0

77. $$\quad \displaystyle ∫\sqrt{u^2−a^2}\,du=\frac{u}{2}\sqrt{u^2−a^2}−\frac{a^2}{2}\ln \left|u+\sqrt{u^2−a^2}\right|+C$$

78. $$\quad \displaystyle ∫u^2\sqrt{u^2−a^2}\,du=\frac{u}{8}(2u^2−a^2)\sqrt{u^2−a^2}−\frac{a^4}{8}\ln \left|u+\sqrt{u^2−a^2}\right|+C$$

79. $$\quad \displaystyle ∫\frac{\sqrt{u^2−a^2}}{u}\,du=\sqrt{u^2−a^2}−a\cos^{-1}\frac{a}{|u|}+C$$

80. $$\quad \displaystyle ∫\frac{\sqrt{u^2−a^2}}{u^2}\,du=−\frac{\sqrt{u^2−a^2}}{u}+\ln \left|u+\sqrt{u^2−a^2}\right|+C$$

81. $$\quad \displaystyle ∫\frac{du}{\sqrt{u^2−a^2}}=\ln \left|u+\sqrt{u^2−a^2}\right|+C$$

82. $$\quad \displaystyle ∫\frac{u^2}{\sqrt{u^2−a^2}}\,du=\frac{u}{2}\sqrt{u^2−a^2}+\frac{a^2}{2}\ln \left|u+\sqrt{u^2−a^2}\right|+C$$

83. $$\quad \displaystyle ∫\frac{du}{u^2\sqrt{u^2−a^2}}=\frac{\sqrt{u^2−a^2}}{a^2u}+C$$

84. $$\quad \displaystyle ∫\frac{du}{(u^2−a^2)^{3/2}}=−\frac{u}{a^2\sqrt{u^2−a^2}}+C$$

## Integrales que involucran a un2 − u2, a > 0

85. $$\quad \displaystyle ∫\sqrt{a^2-u^2}\,du=\frac{u}{2}\sqrt{a^2-u^2}+\frac{a^2}{2}\sin^{-1}\frac{u}{a}+C$$

86. $$\quad \displaystyle ∫u^2\sqrt{a^2-u^2}\,du=\frac{u}{8}(2u^2−a^2)\sqrt{a^2-u^2}+\frac{a^4}{8}\sin^{-1}\frac{u}{a}+C$$

87. $$\quad \displaystyle ∫\frac{\sqrt{a^2-u^2}}{u}\,du=\sqrt{a^2-u^2}−a\ln \left|\frac{a+\sqrt{a^2-u^2}}{u}\right|+C$$

88. $$\quad \displaystyle ∫\frac{\sqrt{a^2-u^2}}{u^2}\,du=\frac{−1}{u}\sqrt{a^2-u^2}−\sin^{-1}\frac{u}{a}+C$$

89. $$\quad \displaystyle ∫\frac{u^2}{\sqrt{a^2-u^2}}\,du=\frac{1}{2}\left(-u\sqrt{a^2-u^2}+a^2\sin^{-1}\frac{u}{a}\right)+C$$

90. $$\quad \displaystyle ∫\frac{du}{u\sqrt{a^2-u^2}}=−\frac{1}{a}\ln \left|\frac{a+\sqrt{a^2-u^2}}{u}\right|+C$$

91. $$\quad \displaystyle ∫\frac{du}{u^2\sqrt{a^2-u^2}}=−\frac{1}{a^2u}\sqrt{a^2-u^2}+C$$

92. $$\quad \displaystyle ∫\left(a^2−u^2\right)^{3/2}\,du=−\frac{u}{8}\left(2u^2−5a^2\right)\sqrt{a^2-u^2}+\frac{3a^4}{8}\sin^{-1}\frac{u}{a}+C$$

93. $$\quad \displaystyle ∫\frac{du}{(a^2−u^2)^{3/2}}=−\frac{u}{a^2\sqrt{a^2−u^2}}+C$$

## Integrales que involucran 2 au − u2, a > 0

94. $$\quad \displaystyle ∫\sqrt{2au−u^2}\,du=\frac{u−a}{2}\sqrt{2au−u^2}+\frac{a^2}{2}\cos^{-1}\left(\frac{a−u}{a}\right)+C$$

95. $$\quad \displaystyle ∫\frac{du}{\sqrt{2au−u^2}}=\cos^{-1}\left(\frac{a−u}{a}\right)+C$$

96. $$\quad \displaystyle ∫u\sqrt{2au−u^2}\,du=\frac{2u^2−au−3a^2}{6}\sqrt{2au−u^2}+\frac{a^3}{2}\cos^{-1}\left(\frac{a−u}{a}\right)+C$$

97. $$\quad \displaystyle ∫\frac{du}{u\sqrt{2au−u^2}}=−\frac{\sqrt{2au−u^2}}{au}+C$$

## Integrales que involucran a + bu, a ≠ 0

98. $$\quad \displaystyle ∫\frac{u}{a+bu}\,du=\frac{1}{b^2}(a+bu−a\ln |a+bu|)+C$$

99. $$\quad \displaystyle ∫\frac{u^2}{a+bu}\,du=\frac{1}{2b^3}\left[(a+bu)^2−4a(a+bu)+2a^2\ln |a+bu|\right]+C$$

100. $$\quad \displaystyle ∫\frac{du}{u(a+bu)}=\frac{1}{a}\ln \left|\frac{u}{a+bu}\right|+C$$

101. $$\quad \displaystyle ∫\frac{du}{u^2(a+bu)}=−\frac{1}{au}+\frac{b}{a^2}\ln \left|\frac{a+bu}{u}\right|+C$$

102. $$\quad \displaystyle ∫\frac{u}{(a+bu)^2}\,du=\frac{a}{b^2(a+bu)}+\frac{1}{b^2}\ln |a+bu|+C$$

103. $$\quad \displaystyle ∫\frac{u}{u(a+bu)^2}\,du=\frac{1}{a(a+bu)}−\frac{1}{a^2}\ln \left|\frac{a+bu}{u}\right|+C$$

104. $$\quad \displaystyle ∫\frac{u^2}{(a+bu)^2}\,du=\frac{1}{b^3}\left(a+bu−\frac{a^2}{a+bu}−2a\ln |a+bu|\right)+C$$

105. $$\quad \displaystyle ∫u\sqrt{a+bu}\,du=\frac{2}{15b^2}(3bu−2a)(a+bu)^{3/2}+C$$

106. $$\quad \displaystyle ∫\frac{u}{\sqrt{a+bu}}\,du=\frac{2}{3b^2}(bu−2a)\sqrt{a+bu}+C$$

107. $$\quad \displaystyle ∫\frac{u^2}{\sqrt{a+bu}}\,du=\frac{2}{15b^3}(8a^2+3b^2u^2−4abu)\sqrt{a+bu}+C$$

108. $$\quad \displaystyle ∫\frac{du}{u\sqrt{a+bu}}=\begin{cases} \frac{1}{\sqrt{a}}\ln \left|\frac{\sqrt{a+bu}−\sqrt{a}}{\sqrt{a+bu}+\sqrt{a}}\right|+C,\quad \text{if}\,a>0\\[4pt] \frac{\sqrt{2}}{\sqrt{−a}}\tan^{-1}\sqrt{\frac{a+bu}{−a}}+C,\quad \text{if}\,a<0 \end{cases}$$

109. $$\quad \displaystyle ∫\frac{\sqrt{a+bu}}{u}\,du=2\sqrt{a+bu}+a∫\frac{du}{u\sqrt{a+bu}}$$

110. $$\quad \displaystyle ∫\frac{\sqrt{a+bu}}{u^2}\,du=−\frac{\sqrt{a+bu}}{u}+\frac{b}{2}∫\frac{du}{u\sqrt{a+bu}}$$

111. $$\quad \displaystyle ∫u^n\sqrt{a+bu}\,du=\frac{2}{b(2n+3)}\left[u^n(a+bu)^{3/2}−na∫u^{n−1}\sqrt{a+bu}\,du\right]$$

112. $$\quad \displaystyle ∫\frac{u^n}{\sqrt{a+bu}}\,du=\frac{2u^n\sqrt{a+bu}}{b(2n+1)}−\frac{2na}{b(2n+1)}∫\frac{u^{n−1}}{\sqrt{a+bu}}\,du$$

113. $$\quad \displaystyle ∫\frac{du}{u^n\sqrt{a+bu}}=−\frac{\sqrt{a+bu}}{a(n−1)u^{n−1}}−\frac{b(2n−3)}{2a(n−1)}∫\frac{du}{u^{n-1}\sqrt{a+bu}}$$

This page titled 18.B: Tabla de Integrales is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Edwin “Jed” Herman & Gilbert Strang (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.