Saltar al contenido principal
LibreTexts Español

4.3: La regla de la cadena

  • Page ID
    115963
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    En las dos últimas secciones aprendimos reglas para diferenciar simbólicamente algunas funciones. Para resumir, hemos establecido algunas fórmulas elementales y algunas reglas aritméticas.

    Fórmulas elementales:

    Si\(f(x)=a\text{,}\) entonces\(f'(x)=0\text{.}\)

    Si\(f(x)=ax\text{,}\) entonces\(f'(x)=a\text{.}\)

    Si\(f(x)=a*x^n\text{,}\) entonces\(f(x)=a*n*x^{n-1}\text{,}\) para cualquier número distinto de cero n.

    Si\(f(x)=e^x\text{,}\) entonces\(f'(x)=e^x\text{.}\)

    Si\(f(x)=a^x\text{,}\) entonces\(f'(x)=a^x \ln(a)\text{.}\)

    Si\(f(x)=\ln(x)\text{,}\) entonces\(f'(x)=1/x\)

    Reglas aritméticas derivadas:

    Regla múltiple escalar: La derivada de\(c*f(x)\) es\(c*f'(x)\text{.}\)

    Regla de suma y diferencia: La derivada de\(f(x)\pm g(x)\) es\(f'(x)\pm g'(x)\text{.}\)

    Regla del producto: La derivada de\(f(x)g(x)\) es\(f' (x) g(x)+f(x)g'(x)\text{.}\)

    Regla del cociente: La derivada de\(f(x)/g(x)\) es\(\frac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2} \text{.}\)

    La otra forma en que tradicionalmente construimos funciones a partir de funciones más simples es mediante el uso de la composición. Queremos ser capaces de tomar derivadas de funciones como\((2x+3)^{52}\text{,}\)\(\sqrt{(x^2 )+5x+7}\text{,}\) y\(1.06^{.2x}\text{.}\)

    Reclamación\(4.3.1\). Chain Rule.

    El derivado de\(f(g(x))\) es\(f'(g(x))g'(x)\) En otras palabras,

    \[ \left[f(g(x))\right]'=f'(g(x))*g'(x)\text{.} \nonumber \]

    Ejemplo 4.3.2: Regla de Cadena Simple.

    Encuentra la derivada de las siguientes funciones:

    1. \(\displaystyle f(p)=(p^3+2 p+5)^7.\)
    2. \(\displaystyle g(q)=\sqrt{q^2+6}.\)
    3. \(\displaystyle h(x)=e^{2 x+5}.\)

    Solución

    1. Podríamos hacer este problema expandiéndolo a un polinomio y usando reglas de la sección anterior, pero eso es demasiado difícil. Podemos escribir\(f(p)\) como\(g(h(p))\) donde\(h(p)=p^3+2 p+5\) y\(g(p)=p^7\text{.}\) usamos las reglas de la sección anterior para computar\(h'(p)=3 p^2+2\) y\(g'(p)=7p^6\text{.}\) componer obtenemos\(g'(h(p))=7(p^3+2 p+5)^6\text{.}\) Así

      \[ f'(p)=g'(h(p))h'(p)=7(p^3+2 p+5)^6(3 p^2+2 ). \nonumber \]


    This page titled 4.3: La regla de la cadena is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mike May, S.J. & Anneke Bart via source content that was edited to the style and standards of the LibreTexts platform.