Saltar al contenido principal
LibreTexts Español

6.4: Ejercicios

  • Page ID
    112955
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1. Clasifica el ángulo de abajo como agudo, obtuso o derecho.

    clipboard_ea48ccb13e941befbd2514bbc79d4cc9b.png

    2. Clasifica el ángulo de abajo como agudo, obtuso o derecho.

    clipboard_e235838468eb6c298b4ad1aa77c0ee428.png

    3. Clasificar el ángulo mostrado como Agudo, Obtuso o Derecho

    clipboard_ebc186a3bcf36db228d1c241ee08a2491.png

    4. Usa la imagen de abajo para responder las siguientes preguntas. Tenga en cuenta que COD es un ángulo recto.

    clipboard_e6387442895240094d68bc05f07439e3f.png

    a) ¿Qué ángulo es complementario a BOC?

    b) ¿Qué ángulo es complementario a BOC?

    c) ¿Cuál es la medida de EOf?

    d) ¿Cuál es la medida de AOE?

    e) ¿Cuál es la medida de BOF?

    5. Encuentra la medida de ángulo desconocida.

    clipboard_e7c47560535ebea783537bc5c2b4a87b6.png

    6. Encuentra la medida de ángulo desconocida.

    clipboard_e96ad887a484844449f3c3fb2bb87b2d6.png

    7. Encuentra la medida de ángulo desconocida.

    clipboard_e52a2458dda7a98fb443dcd0c7fc72b2c.png

    8. Encuentra la medida de ángulo desconocida.

    clipboard_e2e0e98562bd4605cb192192ffda31863.png

    9. Encuentra las medidas de ángulo desconocidas.

    clipboard_e7f07e49345e1049790c529a2a443aca0.png

    10. Encuentra la medida de ángulo desconocida.

    clipboard_ef1763d273ab3d9f5a1b5d1981dcb6454.png

    11. Encuentra la longitud de la hipotenusa del triángulo rectángulo dado que se muestra a continuación. Redondear a dos decimales.

    clipboard_e140963f309a15b859842e57f7b2232ce.png

    12. Encuentra la longitud de la pierna\(x\). Ingresa el valor exacto, no una aproximación decimal.

    clipboard_e56fe15ceef9a1fc945f9a13b74cc303a.png

    13. Encuentra el perímetro de la figura que se muestra a continuación.

    clipboard_e4aefdfbeb68951c9330644097190bb28.png

    14. Encuentra el perímetro del rectángulo que se muestra a continuación.

    clipboard_e56c02341f1a23097a7ef27fb8ab287bd.png

    15. Encuentra el perímetro del paralelogramo que se muestra a continuación.

    clipboard_eee5ffb951d769773aa62a1a289600ba0.png

    16. Encuentra la circunferencia del círculo que se muestra a continuación. Redondee su respuesta a la centésima más cercana.

    clipboard_e11b3602b9f83f1d21bf3f12d984a2f69.png

    17. Encuentra la circunferencia del círculo que se muestra a continuación. Redondee su respuesta a la centésima más cercana.

    clipboard_e9c52cbd8dc39d1ab1c113968e5bb5dce.png

    18. Encuentra el área del rectángulo que se muestra a continuación.

    clipboard_ef3cfdf2bf62e1b71b5bfb83430037f13.png

    19. Encuentra el área de la figura que se muestra a continuación e indica las unidades correctas.

    clipboard_e82856fe51e9b0790ce910f6df9258272.png

    20. Encuentra el área del paralelogramo que se muestra a continuación.

    clipboard_ee5fe00dae28c99bc4a18207e5a70499d.png

    21. El área de un triángulo se puede encontrar usando la fórmula:\(\text{Area } = \dfrac{1}{2} \cdot \text{base} \cdot \text{height}\). Encuentra el área del triángulo que se muestra a continuación, donde las medidas se dan en metros (m).

    clipboard_e878643b7bbd30f45e5bb56cd27e2bcf0.png

    22. Encuentra el área del círculo que se muestra a continuación. Redondee su respuesta a la centésima más cercana.

    clipboard_e1b68fe322566ffc2f5c28b62cdc356b5.png

    23. Encuentra el área del área sombreada. Redondee su respuesta a la décima más cercana.

    clipboard_e7453e7fbef849482225c4a3610761329.png

    24. Haga coincidir la fórmula para cada volumen con la figura a la que se aplique.

    Figura Volumen

    ________ Cilindro Circular Derecho A.\(V = \pi r^2 h\)

    ________ Rectangular Sólido B.\(V = \dfrac{4}{3} \pi r^3\)

    ________ Esfera C.\(V = l\)

    25. El volumen de un cilindro con altura\(h\) y radio se\(r\) puede encontrar usando la fórmula\(V = \pi r^2 h\).

    Esboce un cilindro con\(7\) pies de radio y\(4\) pies de altura, luego busque el volumen y seleccione las unidades correctas. Redondee su respuesta a la décima más cercana.

    26. El volumen de un cono con altura\(h\) y radio se\(r\) puede encontrar usando la fórmula\(V = \dfrac{1}{3} \pi r^2 h\).

    Esboza un cono con\(9\) pies de radio y\(3\) pies de altura, luego encuentra el volumen y selecciona las unidades correctas. Redondee su respuesta a la décima más cercana.

    27. Una pelota deportiva tiene un diámetro de\(26 \text{ cm}\). Encuentra el volumen de la bola y selecciona las unidades correctas. Redondee su respuesta a 2 decimales.


    6.4: Ejercicios is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.